K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

Quy đồng khử mẫu

8 tháng 8 2018

giải cụ thể giúp mk đc ko

18 tháng 10 2019

1) đặt \(\sqrt{x-1}=a\left(a\ge0\right);\sqrt{y-4}=b\left(b\ge0;\right)\)

M = \(\frac{a}{a^2+1}+\frac{b}{b^2+4}\); a2 +1 \(\ge2a;b^2+4\ge4b\)=> M \(\le\frac{a}{2a}+\frac{b}{4b}=\frac{3}{4}\)

M đạt GTLN khi a=1, b=2 hay x=2; y= 8

2) <=> (x-y)2 + (x+2)2 =8 => (x+2)2\(\le8< =>\left|x+2\right|\le\sqrt{8}\approx2< =>-2\le x+2\le2< =>\)\(-4\le x\le0\)

x=-4 => (y+4)2 =4 <=> y = -2;y = -6

x=-3 => (y+3)2 = 7 (vô nghiệm); x=-1 => (y+1)2 =7 (vô nghiệm)

x=0 => y2 = 4 => y =2;  =-2

vậy có các nghiệm (x;y) = (-4;-2); (-4;-6); (0;-2); (0;2)

3) \(\frac{x^2}{y^2}+\frac{y^2}{z^2}\ge2\frac{x}{z}\left(a^2+b^2\ge2ab\right)\); tương tự với các số còn lại ta được điều phải chứng minh

18 tháng 10 2019

3) sửa lại

áp dụng a2+b2+c2 \(\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{3}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)(vì \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{xyz}{yzx}}=3\))

dấu '=' khi x=y=z

28 tháng 8 2018

Ta có : 

\(\frac{3x-2}{5}\ge\frac{x}{2}+0,8\)

\(\Leftrightarrow x\ge12\)

và \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)

\(\Leftrightarrow x< 13\)   \(x\in Z\)

\(\Rightarrow x=12\)

23 tháng 8 2019

Đặt \(\left(x^2+2x+2\right)^2=t\Rightarrow\frac{1}{t^2}+\frac{1}{\left(t+1\right)^2}=\frac{5}{4}\Leftrightarrow\frac{\left(t^2+2t+1\right)+t^2}{t^2\left(t+1\right)^2}=\frac{5}{4}\Leftrightarrow4\left(2t^2+2t+1\right)=5\left(t^4+2t^3+t^2\right)\) \(\Leftrightarrow8t^2+8t+4=5t^4+10t^3+5t^2\Leftrightarrow5t^4+10t^3-3t^2-8t-4=0\)\(\Leftrightarrow\left(t-1\right)\left(t+2\right)\left(5t^2+5t+2\right)=0\Leftrightarrow\hept{\begin{cases}t=1\\t=-2\end{cases}}\)