K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

Xet p=2;p=5;p=3

Sau do xet p>5

4 tháng 11 2015
  1. abab = ab * 101 => không thuộc P
  2. do 6;8;12;14 đều là các số chẵn
    để p+6; p+8; p+12; p+14 là số nguyên tố
    => p chẵn
4 tháng 11 2015

1.a khác 0

=>a có 9 lựa chọn ;1,2,...9

=>b có 10 lựa chọn :0,1,...9

chọn một trong các trường hơp 

ta có :a=1,b=0

1010 là hợp số

=> giả thiết trên sai (điều phải chứng minh)

2

theo đề bài suy ra p+40 là số nguyên tố

p+40=41

=>p=1

cho mình đúng đi !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

27 tháng 12 2017

vì p là số nguyên tố => p thuộc { 2; 3; 5; 7; 11; ......}

+) Với p = 2 => p + 2 = 2 + 2 (hợp số) -> loại

+) Với p = 3 => p + 2 = 3 + 2 = 5 (số nguyên tố)

p + 8 = 3 + 8 = 11 (số ngto)

p + 16 = 3 + 16 = 19 (thỏa mãn)

Nếu p > 3 thì p có 2 dạng : p = 3k + 1; 3k + 2

+) p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chiia hết cho 3 (hợp số)

+) p = 3k + 2 => p + 16 = 3k + 2 + 16 = 3k + 18 chia hết cho 3 (hợp số)

Vậy p = 3

AH
Akai Haruma
Giáo viên
21 tháng 10 2023

Lời giải:

Nếu $p$ là snt chia hết cho $5$ thì $p=5$. Khi đó $p+6. p+8, p+12, p+14$ đều là snt (thỏa mãn) 

Nếu $p$ chia $5$ dư $1$. Đặt $p=5k+1$ với $k$ tự nhiên.

Khi đó $p+14=5k+15=5(k+3)\vdots 5$. mà $p+14>5$ nên không thể là snt (trái giả thiết - loại)

Nếu $p$ chia $5$ dư $2$. Đặt $p=5k+2$ với $k$ tự nhiên.

Khi đó $p+8=5k+10=5(k+2)\vdots 5$. mà $p+8>5$ nên không thể là snt (trái giả thiết - loại)

Nếu $p$ chia $5$ dư $3$. Đặt $p=5k+3$ với $k$ tự nhiên.

Khi đó $p+12=5k+15=5(k+3)\vdots 5$. mà $p+12>5$ nên không thể là snt (trái giả thiết - loại)

Nếu $p$ chia $5$ dư $4$. Đặt $p=5k+4$ với $k$ tự nhiên.

Khi đó $p+6=5k+10=5(k+2)\vdots 5$. mà $p+6>5$ nên không thể là snt (trái giả thiết - loại)

Vậy $p=5$ là đáp án duy nhất.

23 tháng 10 2015

Ở đây có 5 số đều là số nguyên tố: p, p+6, p + 8, p+12, p+14. Ta thử làm phép chia cho 5 xem số dư của chúng là bao nhiêu?

Viết lại 5 số như sau:

p ; p + 5 + 1; p + 5 + 3; p + 10 + 2; p + 10 + 4

=> Trong 5 số trên bao giờ cũng có 1 số chia hết cho 5, 1 số chia cho 5 dư 1; 1 số chia 5 dư 2; 1 số chia 5 dư 3; 1 số chia 5 dư 4.

=> Vậy để chúng đều là số nguyên tố thì p = 5 (vì số 5 là số chia hết cho 5 duy nhất  và là số nguyên tố).

Khi đó 5 số trong đầu bài là:

5; 5 + 5 + 1 = 11; 5 + 5 + 3 = 13; 5 + 10 + 2 = 17; 5 + 10 + 4 = 19

đều là số nguyên tố

29 tháng 12 2016

p=5

p+6    =5+6     =11

p+8    =5+8    =13

p+12  =5+12  =17

p+14  =5+14  =19

chúc bạn học giỏi.

29 tháng 12 2016

p=5

đúng

24 tháng 1 2016

Mọi số tự nhiên đều viết được dưới dạng 5k,5k+1,5k+2,5k+3,5k+4

Nếu p = 5k+1 suy ra p+14=5p+15=5(p+3)chia hết cho 5 (loại)

Nếu p = 5k+2 suy ra p+8=5p+10=5(p+2) chia hết cho 5 (loại) 

Nếu p = 5k+3 suy ra p+12=5p+15=5(p+3) chia het cho 5 (loại)

Nếu p = 5k+4 suy ra p+6= 5p+10=5(p+2)chia hết cho 5 (loại)

Vậy p chỉ có thể bằng 5k.

Mà p là nguyên tố nên p =5.

Vậy p=5