Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a khác 0
=>a có 9 lựa chọn ;1,2,...9
=>b có 10 lựa chọn :0,1,...9
chọn một trong các trường hơp
ta có :a=1,b=0
1010 là hợp số
=> giả thiết trên sai (điều phải chứng minh)
2
theo đề bài suy ra p+40 là số nguyên tố
p+40=41
=>p=1
cho mình đúng đi !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+Nếu p = 2 ⇒⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒⇒ p không chia hết cho 5 ⇒⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)
⇒⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
P=2=>2+6=8 \(\notin\)P (loại)
P=3=>3+6=9\(\notin\)P (loại)
P=5=>5+6=11 \(\in\)P (TM)
5+8=13 \(\in\)P (TM)
5+12=17 \(\in\)P (TM)
5+14=19 \(\in\)P (TM)
P>5 =>P=5.k+1 hoặc P=5.k+2 hoặc P=5.k+3 hoặc P=5.k+4 (k\(\in\)N)
Nếu P=5.k+1 thì P+14=5.k+1+14=5.(k+1)\(⋮5\) =>P+14 \(\notin\)P (loại)
Nếu P=5.k+2 thì P+8=5.k+2+8 =5.(k+2)\(⋮5\)=>P+8 \(\notin\)P(loại)
Nếu P=5.k+3 thì P+12=5.k+3+12=5.(k+3)\(⋮5\)=>P+12 \(\notin\)P(loại)
Nếu P=5.k+4 thì P+6 =5.k+6+4 =5.(k+4) \(⋮5\)=>P+6 \(\notin\)P(loại)
=>P=5(TM)
Vậy để P+6,P+8,P+12,P+14 đều là các số nguyên tố thì P=5
tk cho minh nha
a. A=(p;p+2;p+4)
p=2=>A=(2,4,6)loai vay P phai le
Tập hợp 3 số lẻ liên tiếp phải có số chia hết cho 3
Vậy P =3
A=(3,5,7)
b.A=(p,p+10,p+14); p=2
P=1=> A=(3,13,17) nhan
P>3 (p nguyen to do vay p co dang p=3n+1 &3n+2)
*TH1; P co dang p=3n+1
P+10=3n+11
P+14=3n+15 chia het cho 3=> loai P=3n+1
*TH2; P co dang p=3n+2
P+10=3n+12 chia het cho 3 => loai p=3n+2
vay P=3 duy nhat
c. A=(p,p+2,p+6,p+8)
p=2 loai
p=3=> A=(3.5,9,11) loai
p=5=>A=(5,7,11,13) nhan
P=11A=(11,13,17,19) nhan
xet P>11
tuong tu (b) xe ra hoi dai
de xem co cach ngan hon ko
Ko vì tổng các chữ số hàng lả trừ tổng các chữ số hàng chẵn chia hết cho 11 => abab chia hết cho 11
để p+6; p+8; p+12; p+14 là số nguyên tố
=> p chẵn