Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đúng - Sai
a) 2 số nguyên tố bất kỳ cũng là 2 số nguyên tố cùng nhau Đ
b)Các số nguyên cùng nhau đều là các số nguyên tố S
c) 2 số lẻ thì nguyên tố cùng nhau S
d) Số chắn và số lẻ thì nguyên tố cùng nhau S
HT
Đúng - Sai
a) 2 số nguyên tố bất kỳ cũng là 2 số nguyên tố cùng nhau Đ
b)Các số nguyên cùng nhau đều là các số nguyên tố S
c) 2 số lẻ thì nguyên tố cùng nhau S
d) Số chắn và số lẻ thì nguyên tố cùng nhau KO B
a) +) p=2 => p+10=12
Vì 12 là hợp số
=> p=2 (loại) (1)
+) p=3 => p+10=13 và p+20=23
Vì 13 và 23 là các số nguyên tố
=> p=3 (thỏa mãn) (2)
Với p là số nguyên tố lớn hơn 3
=> p có dạng 3k+1 hoặc 3k+2 (k là số tự nhiên khác 0)
+) p=3k+1 => p+20=3k+1+20=3k+21 chia hết cho 3 (loại) (3)
+) p=3k+2 => p+10=3k+2+10=3k+12 chia hết cho 3 (loại) (4)
Từ (1), (2), (3), (4)
=> p=3
Vậy p=3.
b) +) p=2 => p+2=4
Vì 4 là hợp số
=> p=2 (loại) (1)
+) p=3 => p+6=9
Vì 9 là hợp số
=> p=3 (loại) (2)
+) p=5 => p+2=7 ; p+6=11 ; p+8=13 và p+4=19
Vì 7, 11, 13 và 19 là các số nguyên tố
=> p=5 (thỏa mãn) (3)
Với p là số nguyên tố lớn hơn 5
=> p có dạng 5k+1 ; 5k+2 ; 5k+3 hoặc 5k+4 (k là số tự nhiên khác 0)
+) p=5k+1 => p+14=5k+1+14=5k+15 chia hết cho 5 (loại) (4)
+) p=5k+2 => p+8=5k+2+8=5k+10 chia hết cho 5 (loại) (5)
+) p=5k+3 => p+2=5k+3+2=5k+5 chia hết cho 5 (loại) (6)
+) p=5k+4 => p+6=5k+4+6=5k+10 chia hết cho 5 (loại) (7)
Từ (1), (2), (3), (4), (5), (6), (7)
=> p=5
Vậy p=5.
a, Tổng của 3 số nguyên tố bằng 56 là một số chẵn
=> có 1 số nguyên tố là số chẵn
=> Số nhỏ nhất trong 3 số nguyên tố đó là : 2
b, Không vì 2017 là một số lẻ = số chẵn + số lẻ
+ Số chẵn lớn hơn 2 thì số đó chia hết cho 2 ( loại 0
+ Số chẵn bằng 2 thì số còn lại bằng 2015 chia hết cho 5 ( loại )
c) Goi số chia cho 12 dư 9 là a
=> a = 12k + 9 = 3 ( 4k + 3 ) chia hết cho 3
Do a chia hết cho 3
=> a không là số nguyên tố
d) Số p có 3 dạng : 3k,3k+1,3k+2
Nếu p = 3k thì p = 3 ( vì p là số nguyên tố ) , khi dó p + 2 = 5 và p + 4 = 7 là số nguyên tố
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số (loại )
Nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số ( loại )
Vậy p = 3 thỏa mãn yêu cầu đề bài
1. Các số đó là 2,3,5,7
2.Các số sau là hợp sô hết vì :
a) A chia hết cho 3
b) B chia hết cho 11
c) C chia hết cho 101
d) D = 1112111 = 1111000 + 1111 chia het cho 1111
e) E chia hết cho 3 vì 1! + 2! = 3 chia hết cho 3, còn 3! + ... + 100! cũng chia het cho 3
g) Số 3 . 5 . 7 . 9 - 28 chia hết cho 7
h) Số 311141111 = 311110000 + 31111 chia hết cho 31111
3. Xét p dưới dạng : 3k ( khi đó p = 3), 3k + 1, 3k + 2 ( k thuộc N ). Dạng thứ 3 ko thỏa mãn đề bài ( vì khi dó 8p - 1 là hợp số), 2 dạng trên đều cho 8p + 1 là hợp số.
4. r = 1.
a,b,c,d,g,h là hợp số
e là số nguyên tố
tớ chỉ biết làm bài 2 thôi
b) 5p + 3 là số nguyên tố
=> 5p + 3 lẻ
=> 5p chẵn
=> p chẵn
Mà số nguyên tố chẵn duy nhất là 2.
Vậy p = 2
c) Vì p là số nguyên tố < 7 nên :
- Nếu p = 2 thì p + 2 = 4, là hợp số, loại
- Nếu p = 3 thì p + 6 = 9, là hợp số, loại
- Nếu p = 5 thì p + 2 = 7 ; p + 6 = 11 ; p + 8 = 13 đều là số nguyên tố, chọn
Vậy p = 5