K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

Ta có : \(n^3+2018n=n\left(n^2-1+2019\right)=\left(n-1\right)n\left(n+1\right)+2019n⋮3\forall n\inℤ\) (*)

Lại có : \(2020\equiv1\left(mod3\right)\)

\(\Rightarrow2020^{2019}\equiv1\left(mod3\right)\)

Và : \(4\equiv1\left(mod3\right)\)

Do đó : \(2020^{2019}+4\equiv2\left(mod3\right)\)

hay \(2020^{2019}+4⋮̸3\) . Điều này mâu thuẫn với (*)

Do đó, không tồn tại số nguyên n thỏa mãn đề.

12 tháng 3 2021

Ta có \(n^3+2018n=n\left(n-1\right)\left(n+1\right)+2019n⋮3\).

Lại có \(2020^{2019}+4\equiv1^{2019}+4\equiv2\left(mod3\right)\).

Từ đó suy ra không tồn tại n thoả mãn đề bài.