Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để phân số trên có giá trị là số nguyên thì:
n + 5 chia hết cho n + 2
<=> ( n + 2 ) + 3 chia hết cho n+2
ta thấy: n + 2 chia hết cho n + 2
=> 3 phải chia hết cho n + 2
=> n + 2 thuộc Ư(3)
n + 2 thuộc { 1; 3; -1 ; -3)
n thuộc { -1; 1; -3; -5}
Có: \(\frac{n+5}{n+2}=1+\frac{3}{n+2}\)
Để \(\frac{n+5}{n+2}\)có giá trị nguyên thì \(\frac{3}{n+2}\)có giá trị nguyên.
\(\Rightarrow3⋮n+2\)
\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-2;-1;1;2;3\right\}\)
\(\Rightarrow n\in\left\{-5;-4;-3;-1;0;1\right\}\)
Vậy với \(n\in\left\{-5;-4;-3;-1;0;1\right\}\)thì \(\frac{n+5}{n+2}\)có giá trị nguyên.
Đẻ \(\frac{n+5}{n+2}\) nguyên thì n+5 chia hết cho n+2
(n+5)-(n+2) chia hết cho n+2
3 chia hết cho n+2
\(n+2\in\left\{1;3;-1;-3\right\}\)
\(n\in\left\{-1;1;-3;-5\right\}\)
Để n+5/n+2 đạt giá trị nguyên
<=> n+5 chia hết cho n+2
=> (n+2)+3 chia hết cho n+2
Để (n+2)+3 chia hết cho n+2
<=> n+2 chia hết cho n+2 (luôn luôn đúng với mọi n)
Và 3 phải chia hết cho n+2
Vì 3 chia hết cho n+2 => n+2 thuộc Ư(3)={-3;-1;1;3}
Ta có bảng sau:
n+2 | -3 | -1 | 1 | 3 |
n | -1 | 1 | 3 | 5 |
Vậy các giá trị của n thỏa mãn yêu cầu bài toán là -1;1;3;5
Ta có n+5 = n+2+3
để n+5/n+2 có giá trị là số nguyên thì n+5 chia hết cho n+2 hay n+2+3 chia hết cho n+2 mã n+2 chia hết cho n+2 nên 3 chia hết cho n+2 suy ra n+2 thuộc U(3)
Ma U3) ={-3;-1;1;3} suy ra n+2 thuoc {-3;-1;1;3}
vì n là số nguyên nên ta có bảng sau
n+2 | -3 | -1 | 1 | 3 |
n | -5 | -3 | -1 | 1 |
n/xét | chon | chon | chon | chon |
vậy với n thuộc {-5;-3;-1;1} thì n+5/n+2 có giá trị là số nguyên
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
Ta có :
\(A=\frac{n-5}{n-2}=\frac{n-2-3}{n-2}=\frac{n-2}{n-2}-\frac{3}{n-2}=1-\frac{3}{n-2}\)
Để \(A\inℤ\) thì \(\frac{3}{n-2}\inℤ\) \(\Rightarrow\) \(3⋮\left(n-2\right)\) \(\Rightarrow\) \(\left(n-2\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
\(n-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(3\) | \(1\) | \(5\) | \(-1\) |
Vậy \(n\in\left\{-1;1;3;5\right\}\)
Chúc bạn học tốt ~
Ta có n-5/n-2=(n-2)-3/n-2=1 - 3/n-2
Để n-5/n-2 nguyên thì 3 chia hết cho n-2
Nên n-2 là ước của 3
Với n-2=1=>n=3
Với n-2=-1=>n=1
Với n-2=3 =>n=5
Với n-2=-3=>n=-1
Vậy n=-1;5;1;3
Để phân số: \(\frac{n+5}{n+2}\) là số nguyên thì n+ 5 phải chia hết cho n+ 2.
=> (n+ 5) - (n+ 2) sẽ chia hết cho n+ 2.
=> 3 chia hết cho n+ 2.
=> n+ 2 thuộc ƯC( 3)
=> Ta có bảng sau:
n+2 | -1 | 1 | -3 | 3 |
n | -3 | -1 | -5 | 1 |
Vậy n ∈ { -5; -3; -1; 1 }
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
\(\frac{15}{n}\)nhận giá trị nguyên <=>n thuộc Ư(15)
<=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}
Vậy \(\frac{15}{n}\)đạt giá trị nguyên <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}
Để 3 phân số trên nhận giá trị nguyên thì
n\(\in\)Ư(15)=>n={\(\pm\)1;\(\pm\)3;\(\pm\)5;\(\pm\)15}
n+2\(\in\)Ư(12)
2n-5\(\in\)Ư(6)
=>n=\(\pm\)1;\(\pm\)3,...
Để P/S \(\frac{n+5}{n+2}\) là số nguyên thì
n+5 \(⋮\)n+2
\(\Leftrightarrow\)n+2+3 \(⋮\)n+2
Mà n+2 \(⋮\)n+2 nên 3 \(⋮\)n+2
=>n+2EƯ(3)={-1;-3;1;3}
nE{-3;-5;-1;1}
\(\frac{n+5}{n+2}\)= \(\frac{n+2}{n+2}\)+ \(\frac{3}{n+2}\) =1+\(\frac{3}{n+2}\) để phân số đã cho nguyên khi n+2 là ước của 3
n+2=(-1; 1;3;-3)
n=(-3; -1;1;-5)