K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để 2n-3/3n+2 là số nguyên thì \(3\left(2n-3\right)⋮3n+2\)

\(\Leftrightarrow6n-9⋮3n+2\)

\(\Leftrightarrow3n+2\in\left\{1;-1;13;-13\right\}\)

mà n là số nguyên

nên \(n\in\left\{-1;-5\right\}\)

4 tháng 3 2022

\(\dfrac{6n-9}{3n+2}=\dfrac{2\left(3n+2\right)-13}{3n+2}=2-\dfrac{13}{3n+2}\Rightarrow3n+2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

3n+21-113-13
nloại-1loại-5

 

8 tháng 5 2017

mới học lớp  5 thui

8 tháng 5 2017

\(P=\frac{2n-5}{3n-2}\)

\(P=\frac{3\left(2n-5\right)}{2\left(3n-2\right)}\)

\(P=\frac{6n-5}{6n-2}\)

Suy ra -7 chia hết cho 3n - 2 hay 3n - 2 thuộc Ư(7)

Ta có Ư(7) = -1;-7;1;7

Do đó

3n - 2 = -1

3n      = -1 + 2

3n      = 1

n       = 1 : 3

n       = rỗng

3n - 2 = -7

3n      = -7 + 2

3n      = -5

n        = -5 : 3

n       = rỗng

3n - 2 = 1

3n      = 1 + 2

3n      = 3

n        = 3 : 3 

n        = 1

3n - 2  = 7

3n       = 7 + 2

3n       = 9

n         = 9 : 3

n         = 3

Mà n có giá trj là số nguyên nên n = 1;3

Nếu đúng thì tk nha

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

15 tháng 7 2016

a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê

<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}

<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}

Bạn tự tính giá trị với mỗi n

b) Tương tự

15 tháng 7 2016

Thank you các bạn nha !

4 tháng 5 2019

a)A=\(\frac{2n+1+3n+5-4n+5}{n-3}\)

A=\(\frac{5n+6-4n+5}{n-3}\)

A=\(\frac{n+1}{n-3}\)

A=\(\frac{n-3+4}{n-3}\)

A=\(\frac{n-3}{n-3}\)\(\frac{4}{n-3}\)

A=1+\(\frac{4}{n-3}\)

Để A nguyên thì 4n-3 hay n-3Ư(4).Ta có bảng sau:

n-3124-1-2-4
n45721

-1

Vậy n{ 4;5;7;2;1;-1)

4 tháng 5 2019

Để P có giá trị nguyên 

=> 2n - 5 \(⋮\)3n - 2

=> 6n - 15 \(⋮\)3n - 2

=> 2( 3n - 2 ) - 11 \(⋮\)3n - 2

=> 11 \(⋮\)3n - 2

=> 3n - 2 \(\in\)Ư(11)

=> 3n - 2 \(\in\){ 1 ; -1 ; 11 ; -11 }

=> 3n \(\in\){ 3 ; 1 ; 13 ; -9 }

=> n \(\in\){ 1 ; 1/3 ; 13/3 ; -3 }

Mà n là số nguyên

Vậy n \(\in\){ 1 ; -3 }

15 tháng 3 2023

Để 3n-1/2n+1 ∈ Z thì 3n-1⋮2n+1

Mà 2n+1 ⋮2n+1 => (3n-1)-(2n+1)⋮2n+1 => n-2⋮2n+1=> 2(n-2)⋮2n+1

=> 2n-4 ⋮2n+1

Mà 2n+1 ⋮2n+1 => (2n+1)-(2n-4) ⋮2n+1 =>5 ⋮2n+1

Mà n ∈ Z => 2n+1 ∈ Z

=> 2n+1 ∈ {1; 5; -1; -5}

=> n ∈ {0; 2; -1; -3}

Thử lại thỏa mãn.

Vậy n ∈ {0; 2; -1; -3}

17 tháng 3 2020

Để \(\frac{3n+1}{2n-3}\in Z\Leftrightarrow3n+1⋮2n-3\)

\(\Leftrightarrow2\left(3n+1\right)⋮2n-3\)

\(\Leftrightarrow6n-9+11⋮2n-3\)

Ta thấy \(6n-9⋮2n-3\forall n\)

\(\Rightarrow6n-9+11⋮2n-3\Leftrightarrow11⋮2n-3\)

\(\Leftrightarrow2n-3\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)

\(\Leftrightarrow n\in\left\{2;1;7;-4\right\}\)

...