Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
1) Ta có: 6n-1=2(3n+2)-5
Để 6n-1 chia hết cho 3n+2 thì 2(3n+2)-5 phải chia hết cho 3n+2
=> -5 phải chia hết cho 3n+2 vì 2(3n+2) chia hết cho 3n+2
Vì \(n\inℤ\Rightarrow3n+2\inℤ\Rightarrow3n+2\inƯ\left(-5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng giá trị
3n+2 | -5 | -1 | 1 | 5 |
3n | -7 | -3 | -1 | 3 |
n | \(\frac{-7}{3}\) | -1 | \(\frac{-1}{3}\) | 1 |
Đối chiếu điều kiện \(x\inℤ\)
Vậy n=\(\pm1\)
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Rightarrow\frac{1}{6}+\frac{y}{3}=\frac{5}{x}\)
\(\Rightarrow\frac{1}{6}+\frac{2y}{6}=\frac{5}{x}\)
\(\Rightarrow x\left(1+2y\right)=30\)
\(\Rightarrow x;1+2y\inƯ\left(30\right)=\left\{\pm1;\pm3;\pm5;\pm6;\pm10\pm30\right\}\)
Vì 2y là số chẵn => 1+2y là số lẻ
=> 1+2y là ước lẻ của 30
Ta có bảng:
x | -5 | -3 | -1 | 1 | 3 | 5 |
1+2y | -6 | -10 | -30 | 30 | 10 | 6 |
2y | -5 | -9 | -29 | 29 | 9 | 5 |
y | \(\frac{-5}{2}\) | \(\frac{-9}{2}\) | \(\frac{-29}{2}\) | \(\frac{29}{2}\) | \(\frac{9}{2}\) | \(\frac{5}{2}\) |
=> x;y \(\in\varnothing\)
a) Ta có : 3n+6 chia hết cho 3n+6
=>2(3n+6) chia hết cho 3n+6
=> 6n+3-6n+12 chia hết cho 3n+6
-9 chia hết cho 3n+6
=> 3n+6 thuộc Ư(-9)={1,-1,3,-3,9,-9}
3n={-5,-7,-3,-9,3,-15}
n={-1,-3,1,-5}
a) n không có giá trị
b) n = 2
c) n= 6 ;8
d)n khong có giá trị
e) n= 3
=) 6n-1 \(⋮\)3n+2
=) [ 6n-1-(3n+2)] \(⋮\)3n+2
=) [ 6n-1-2(3n+2)] \(⋮\)3n+2
=) [ 6n-1-(6n+4)] \(⋮\)3n+2
=) 6n-1-6n-4 \(⋮\)3n+2
=) ( 6n-6n ) - ( 1 - 4 ) \(⋮\)3n+2
=) -5 \(⋮\)3n+2
=) 3n+2 \(\in\)Ư ( -5 )
rồi bạn tìm ước của 5 và tìm n
Lời giải:
Để $(n+5)(n+6)\vdots 6n$ thì trước tiên $(n+5)(n+6)\vdots n$
$\Rightarrow n^2+11n+30\vdots n$
$\Rightarrow 30\vdots n$
$\Rightarrow n\in\left\{1; 2;3;5;6;10; 15; 30\right\}$
Thử lại vào điều kiện đề thì thấy $n\in\left\{1; 3; 10; 7\right\}$ thỏa mãn.
6n+4=3.(2n+1)+1 chia hết cho 2n+1 suy ra 1 chia hết cho 2n+1 suy ra 2n+1 thuộc Ư(1)={1,-1}
2n+1=-1=>2n=-2 suy ra n=-1
2n+1=1 => 2n=0=> n=0
vì n thuộc Z suy ra n=0 hoặc n=-1
ta có: 6n + 4 chia hết cho 2n+1
=> 6n + 3 + 1 chia hết cho 2n+1
3.(2n+1) + 1 chia hết cho 2n+1
mà 3.(2n+1) chia hết cho 2n+1
=> 1 chia hết cho 2n+1
=> 2n +1 thuộc Ư(1)=(1;-1)
nếu 2n+1 = 1 => 2n= 0 => n=0 (TM)
2n+1 = -1 => 2n = -2 => n = -1 (TM)
KL: n = (0;-1)
a, 6n - 1 = 2.( 3n + 2 ) - 5
mà 2.( 3n + 2 ) \(⋮\) 3n + 2
Để 6n - 1 \(⋮\) 3n + 2
\(\Leftrightarrow\) 5 \(⋮\) 3n + 2
=> 3n + 2 \(\inƯ\left(5\right)=\left\{-1;1;5;-5\right\}\)
Ta có bảng :
3n + 2 - 1 1 5 - 5
n - 1 / 1 /
Vậy n \(\in\) { - 1 ; 1 }
n=-6 quá dễ