Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~
\(1.\left(x+3\right)^3=\frac{1}{-27}\)
\(\left(x+3\right)^3=\left(\frac{1}{-3}\right)^3\)
\(\Rightarrow x+3=\frac{1}{-3}\)
\(\Rightarrow x=\frac{-1}{3}-3\)
\(x=\frac{-10}{3}\)
\(=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{n.\left(n+1\right)}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{n.\left(n+1\right)}\)
1. \(n\in\left\{1;2;3;4;5;...\right\}\)
2. \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1009}\)
\(\Rightarrow A=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)
Ta có :
\(\left(A-B-1\right)^{2019}=\left(\frac{1}{1010}+...+\frac{1}{2019}-\left(\frac{1}{1010}+...+\frac{1}{2019}\right)-1\right)^{2019}\)
\(=\left(-1\right)^{2019}=-1\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}...+\frac{1}{n.\left(n+1\right)}=\frac{2015}{2016}\)
\(\frac{1.2}{3.2}+\frac{1.2}{6.2}+\frac{1.2}{10.2}+...+\frac{1}{n\left(n+1\right)}=\frac{2015}{2016}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{1}{n.\left(n+1\right)}=\frac{2015}{2016}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{1}{n\left(n+1\right)}=\frac{2015}{2016}\)
\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2015}{2016}\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)=\frac{2015}{2016}\)
\(2.\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2015}{2016}\)
\(\frac{1}{2}-\frac{1}{n+1}=\frac{2015}{2016}:2\)
\(\frac{1}{2}-\frac{1}{n+1}=\frac{2015}{4032}\)
\(\frac{1}{n+1}=\frac{1}{2}-\frac{2015}{4032}\)
\(\frac{1}{n+1}=\frac{1}{4032}\)
\(\Rightarrow n+1=4032\)
\(\Rightarrow n=4031\)
\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{n\left(n+1\right)}=\frac{1999}{2001}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{1999}{2001}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)=\frac{1999}{2001}\)
\(2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{1999}{2001}\)
\(\frac{1}{2}-\frac{1}{n+1}=\frac{1999}{4002}\)
\(\frac{1}{n+1}=\frac{1}{2001}\)
=>n+1=2001
=>n=2000
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x-1\right)}=\)\(\frac{2017}{2019}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x-1\right)}=\frac{2017}{2019}\)
\(2\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right]=\frac{2017}{2019}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\)\(\frac{2017}{2019}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{2019}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{4038}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2017}{4038}\)
\(\frac{1}{x+1}=\frac{1}{2019}\)
x + 1 =2019
x = 2019-1 =2018
Vậy x = 2018
\(2\left(\frac{1}{3}.\frac{1}{2}+\frac{1}{6}.\frac{1}{2}+\frac{1}{10}.\frac{1}{2}+....+\frac{2}{x\left(x+1\right)}.\frac{1}{2}\right)=\frac{2017}{2019}\)
=>\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
=>\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}\right)\)\(=\frac{2017}{2019}\)
=>\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
=> \(2[\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+....+\left(\frac{1}{x}-\frac{1}{x}\right)-\frac{1}{x+1}]=\frac{2017}{2019}\)
=>\(2\left(\frac{1}{2}+0+0+....+0-\frac{1}{x-1}\right)=\frac{2017}{2019}\)
=>\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
=>\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{4038}\)
=>\(\frac{1}{x+1}=\frac{1}{2019}\)
=> x+1=2019
=>x=2018
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Rightarrow x=305\)
a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Leftrightarrow x=308-3\)
\(\Leftrightarrow x=305\)
Vậy \(x=305\)
Bạn tham khảo câu trả lời tương tự ở đây nhé:
Câu hỏi của Nguyễn Hải - Toán lớp 7 - Học toán với OnlineMath
\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+...+\(\frac{2}{n\left(n+1\right)}\)=\(\frac{2017}{2019}\)
\(\frac{2}{6}\)+\(\frac{2}{12}\)+\(\frac{2}{20}\)+...+\(\frac{2}{n\left(n+1\right)}\)=\(\frac{2017}{2019}\)
2\(\times\)\((\)\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+...+\(\frac{1}{n.\left(n+1\right)}\)\()\)=\(\frac{2017}{2019}\)
2\(\times\)\((\)\(\frac{1}{2}\)_\(\frac{1}{3}\)+\(\frac{1}{3}\)_\(\frac{1}{4}\)+\(\frac{1}{4}\)_\(\frac{1}{5}\)+...+\(\frac{1}{n}\)_\(\frac{1}{n+1}\)\()\)=\(\frac{2017}{2019}\)
2\(\times\)\((\)\(\frac{1}{2}\)_\(\frac{1}{n+1}\)\()\)=\(\frac{2017}{2019}\)
\(\frac{1}{2}\)_\(\frac{1}{n+1}\)=\(\frac{2017}{4038}\)
\(\frac{1}{n+1}\)=\(\frac{1}{2}\)_\(\frac{2017}{4038}\)
\(\frac{1}{n+1}\)=\(\frac{1}{2019}\)
\(\Rightarrow\)n+1=2019
\(\Rightarrow\)n=2018\(\in\)Z
Vậy n=2018