Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:D
Cách 1:
2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
Cách 2:
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2.
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b.
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2.
Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.
1)
câu a:
x-(3-5x)=-2x-5
<=> x-3+5x=-2x-5
<=> x+5x+2x=-5+3
<=> 8x=-2
<=> x = -1/2
Câu b: -3x-|x-2| = 6
<=> -|x-2|=6+3x
<=> |x-2| = -(6+3x) = -6-3x
TH1 nếu x - 2 > 0 thì |x-2| = x-2
ta có: x-2 = -6-3x
<=> x +3x = -6+2
<=> 4x = -4
<=> x = -1 (loại vì x = -1 thì x - 2 < 0)
TH2 nếu x - 2 < 0 thì |x-2| = -(x-2)
ta có: -(x-2) = -6-3x
<=> -x+2 = -6-3x
<=> -x+3x = -6-2
<=> 2x = -8
<=> x = -4
Vậy x = - 4
bài 2: (5-m)(2m-1) > 0
để tích (5-m)(2m-1) > 0 thì
(5-m) và (2m-1) cùng âm hoặc cùng dương
TH1
5-m>0 và 2m-1
5-m>0 ,<=> m<5 và 2m-1 > 0 => m>1/2
<=> 1/2<m<5
=> m = {1; 2; 3; 4}
TH2:
5 - m < 0 => m > 5 và 2m-1 < 0 => 2m<1 => m<1/2
m>5 và m<1/2 => không có giá trị nào của m thỏa mãn
Vậy m \(\in\) {1; 2; 3; 4}
\(k^2=\left(m+1\right)\left(m^2+2m\right)\) là số chính phương
\(\Rightarrow k^2=m\left(m+1\right)\left(m+2\right)\ge0\)
Lập bảng xét dấu
\(m\) | \(-2\) \(-1\) \(0\) |
\(m\) | \(-\) \(|\) \(-\) \(|\) \(-\) \(0\) \(+\) |
\(m+1\) | \(-\) \(|\) \(-\) \(0\) \(+\) \(|\) \(+\) |
\(m+2\) | \(-\) \(0\) \(+\) \(|\) \(+\) \(|\) \(+\) |
\(m\left(m+1\right)\left(m+2\right)\) | \(-\) \(0\) \(+\) \(0\) \(-\) \(0\) \(+\) |
\(\Rightarrow\left[{}\begin{matrix}-2\le m\le0\\m>0\end{matrix}\right.\)
\(TH1:\) \(-2\le m\le0\Rightarrow m\in\left\{-2;-1;0\right\}\) thỏa mãn \(k^2=0\ge0\)
\(TH2:\) \(m>0\)
\(k^2=\left(m+1\right)\left(m^2+2m\right)\)
\(d=UC\left(m+1;m^2+2m\right)\)
\(\Rightarrow\left\{{}\begin{matrix}m+1⋮d\\m^2+2m⋮d\end{matrix}\right.\)
\(\Rightarrow m^2+2m-2\left(m+1\right)⋮d\)
\(\Rightarrow m^2+2m-2m-1⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\)
\(\Rightarrow\left(m+1\right)\left(m^2+2m\right)\) là số chính phương khi chúng là số chính phương.
Ta lại có :
\(\left(m+1\right)\left(m^2+2m\right)=m\left(m+1\right)\left(m+2\right)\) là tích của 3 số liên tiếp nhau không phải là số chính phương khi m>0
Vậy \(m\in\left\{-2;-1;0\right\}\) thỏa mãn đề bài
số nguyên m=5
chia hết
m-5 chia hết 2m+1
2(m-5) chia het 2m+1
2m-10 chia het 2m+1
2m+1-11 chia het 2m+1
11 chia het cho 2m+1
2m+1=U(11)={+-1,+-11}
2m={-12,-2,0,10}
m={-6,-1,0,5}