K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

PTTNT: n^4 + 4 = ( n^2 + 2 )^2 - 4n^2

                       = ( n^2 + 2 ) - (2n)^2

                       = ( n^2 + 2 - 2n )( n^2 + 2 + 2n )

=> 1

14 tháng 2 2016

moi hok lop 6

14 tháng 2 2016

mình mới học lớp 5 xin lỗi

26 tháng 7 2018

\(P=n^3-n^2+n-1\)

\(=n^2\left(n-1\right)+\left(n-1\right)\)

\(=\left(n-1\right)\left(n^2+1\right)\)

Đế P là số nguyên tố thì:  \(\orbr{\begin{cases}n-1=1\\n^2+1=1\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\left(TM\right)\\n=0\left(L\right)\end{cases}}\)

Vậy n= 2

9 tháng 8 2019

Em tham khảo!

Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath

Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath 

\(n^4+4=\left(n^2\right)^2+4n^2+4-\left(2n\right)^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2+2n+2\right)\left(n^2-2n+2\right)\)

Vì n^4+4 là SNT mà n^2+2n+2>n^2-2n+2 nên

\(\Rightarrow n^2-2n+2=1\Rightarrow n^2-2n+1=0\Rightarrow\left(n-1\right)^2=0\Rightarrow n-1=0\Rightarrow n=1\)

Thử lại:1^4+4=5 là SNT

Vậy n=5

23 tháng 12 2021

Đặt A=1+n2017+n2018 

*Nếu: n=1 => A= 1 + 12017 + 12018 = 3 (t/m)

Do đó: A là số nguyên tố

*Nếu: n>1

1+n2017+n2018

 =(n2018-n2)+(n2017-n)+(n2+n+1)

=n2.(n2016-1)+n.(n2016-1)+(n2+n).(n2016-1)+(n2+n+1)

Vì: n2016 chia hết cho n3

=> n2016-1 chia hết cho n3-1

=> n2016-1  chia hết cho (n2+n+1) 

Mà: 1<n2+n+1<A=> A là số nguyên tố  (k/tm đk đề bài số nguyên dương)

Vậy n=1