Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow P^2=\left(m-1\right)\left(m+n\right)\)
ta có \(Ư\left(P^2\right)\in\left\{1;p;p^2\right\}\)vì p là số nguyên tố
do \(m+n>m-1;m+n\ne m-1\Rightarrow m+n=p^2;m-1=1\)
\(\Rightarrow m=1+1=2\Rightarrow m+n=2+n=P^2\left(đpcm\right)\)
điều kiên tồn tại vt >0=> m > 1
=> \(p^2=\left(m+n\right)\left(m-1\right)\left(1\right)\)
vt là bp số nguyên tố nên vp xảy ra các TH
TH1:\(p=\left(m+n\right)=\left(m-1\right)=>n=-1\)( loại n là số tự nhiên)
Th2: một trong 2 số phải bằng 1 có m>1 => m+n>1
=> m-1=1 => m=2
=>\(p^2=\left(n+2\right)\left(2-1\right)=n+2\left(dpcm\right)\)
1/
\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy...
A = 5/20.22 + 5/22.24+...+5/79.81
A = 5/2 . (2/20.22 + 2/22.24 + ... + 2/79.81)
A = 5/2 . (1/20 - 1/22 + 1/22 - 1/24 + ... + 1/79 - 1/81)
A = 5/2 . (1/20 - 1/81)
A = 5/2 . 61/1620
A = 61/648
B = 1/1.2.3 + 1/2.3.4 + ... + 1/18.19.29
2B = 2/1.2.3 + 2/2.3.4 + ... + 2/18.19.20
\(\Rightarrow\)B = 1/1.2 + 1/2.3 + ... + 1/19.20
\(\Rightarrow\)B = 1/1.2 - 1/19.20
B = 1/2 - 1/380
B = 189/380
Bình phương của số lẻ chia cho 4 dư 1: (2k + 1)² = 4k(k + 1) + 1 ♦
---------------
Ta cmr m + n và m² + n² không có chung ước nguyên tố lẻ. Thật thế giả sử m + n và m² + n² có chung ước nguyên tố lẻ p => p cũng là ước của (m + n)² - (m² + n²) = 2mn => p là ước của n (hoặc m) => p là ước của m (hoặc n) => m, n có ước chung p > 1, mâu thuẫn với giả thiết.
(m, n) = 1 => m, n không cùng chẵn. Ta xét 2 th
1. m, n cùng lẻ => m + n và m² + n² cùng chẵn. Mặt khác ♦ => m² + n² chia cho 4 dư 2, tức chỉ chia hết cho 2 => (m + n, m² + n²) = 2
2. m, n khác tính chẵn lẻ => m + n và m² + n² cùng lẻ => không có chung ước nguyên tố chẵn, và như trên đã chỉ ra chúng không có chung ước nguyên tố lẻ => (m + n, m² + n²) = 1