K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

\(\left|x-3.5\right|-3.5=4\)

\(\left|x-15\right|-15=4\)

\(\left|x-15\right|=4+15\)

\(\left|x-15\right|=19\)

TH1: \(x-15=19\) TH2:\(x-15=-19\)

\(x=19+15\) \(x=-19+15\)

\(x=34\) \(x=-4\)

⇒x=\(\left[{}\begin{matrix}34\\-4\end{matrix}\right.\)

10 tháng 12 2017

\(\left|x-3,5\right|=4+3,5\)

\(\left|x-3,5\right|\)= 7,5

*TH1: x - 3,5<0(=)x<3,5

(=)x - 3,5=-7,5

x=-7,5+3,5

x=-4(TMĐK)

*TH2: x - 3,5\(\ge\)0

x - 3,5=7,5

x=7,5+3,5

x=11(TMĐK)

30 tháng 10 2020

Ta có : \(\hept{\begin{cases}\left(x-3,5\right)^2\ge0\forall x\\\left(y-\frac{1}{10}\right)^4\ge0\forall y\end{cases}}\Rightarrow\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^4\ge0\forall x,y\)(1)

mà đề bài cho \(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^4\le0\)(2)

Từ (1) và (2) => \(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^4=0\)

=> \(\hept{\begin{cases}x-3,5=0\\y-\frac{1}{10}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3,5\\y=\frac{1}{10}\end{cases}}\)

Vậy ...

30 tháng 10 2020

(x-3,5)mux2+(y-1 phần 10) mũ 4

=(x+y) mũ 2 nhân (3,5-1 phần 10)mũ 4

=xy mũ 2 nhân 3,4 mũ 4

= 3,4xy mũ 6

23 tháng 11 2021

\(\Leftrightarrow\dfrac{1}{2}\left[\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right]=\dfrac{49}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Leftrightarrow2x+1=99\Leftrightarrow x=49\)

23 tháng 11 2021

Em cảm ơn.

17 tháng 9 2020

\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\Leftrightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{2x+3}=\frac{1}{93}\)

\(\Leftrightarrow2x+3=93\)

\(\Leftrightarrow2x=90\)

\(\Leftrightarrow x=45\)

17 tháng 9 2020

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Rightarrow\frac{1}{2x+3}=\frac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(\Rightarrow2x=90\)

\(\Rightarrow x=45\)

Vậy x = 45.

19 tháng 2 2019

Với mọi x ta có :

+) \(\left|x+\dfrac{1}{1.3}\right|\ge0; \)

+) \(\left|x+\dfrac{1}{3.5}\right|\ge0;\)

.....................................

+) \(\left|x+\dfrac{1}{97.99}\right|\ge0\)

\(\Leftrightarrow\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+.......+\left|x+\dfrac{1}{97.99}\right|\ge0\)

\(\Leftrightarrow50x\ge0\)

\(\Leftrightarrow x\ge0\)

Khi \(x\ge0\) ta được :

+) \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3}\)

+) \(\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5}\)

.............................................

+) \(\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\)

\(\Leftrightarrow\left(x+\dfrac{1}{1.3}\right)+\left(x+\dfrac{1}{3.5}\right)+......+\left(x+\dfrac{1}{97.99}\right)=50x\)

\(\Leftrightarrow49x+\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{97.99}\right)=50x\)

\(\Leftrightarrow x=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{97}-\dfrac{1}{99}\)

\(\Leftrightarrow x=\dfrac{16}{99}\)

Vậy...

11 tháng 9 2015

2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3)=2.15/93

1/3-1/5+1/5-1/7+...+1/2x+1-1/2x+3=10/31

1/3-1/2x+3=10/31

1/(2x+3)=1/93

2x+3=93

2x=90

x=45

25 tháng 11 2017

1)   \(\frac{x+4}{2005}\)\(+\)\(\frac{x+3}{2006}\)\(\frac{x+2}{2007}\)\(+\)\(\frac{x+1}{2008}\)

\(\Leftrightarrow\)   \(\frac{x+4}{2005}\)\(+\)\(+\)\(\frac{x+3}{2006}\)\(+\)1 = \(\frac{x+2}{2007}\)\(+\)\(+\)\(\frac{x+1}{2008}\)\(+\)1

\(\Leftrightarrow\)\(\frac{x+2009}{2005}\)\(\frac{x +2009}{2006}\)\(\frac{x+2009}{2007}\)+\(\frac{x+2009}{2008}\)

\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006) = (x + 2009)(1/2007 + 1/2008)

\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006 - 1/2007 - 1/2008) = 0

Ta thấy:  1/2005 + 1/2006 - 1/2007 - 1/2008 \(\ne\)0

\(\Leftrightarrow\)x + 2009 = 0

\(\Leftrightarrow\)x = -2009

16 tháng 2 2021

\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=\left(x-1\right)\left(x-2\right)x=0\)

tìm đc x=0;1;2

29 tháng 12 2016

A\(A=\frac{1}{1.3}+..+\frac{1}{x\left(x+1\right)}\)

\(2A=\frac{1}{1}-\frac{1}{\left(x+1\right)}\)

\(A=\frac{x}{2.\left(x+1\right)}=\frac{8}{17}=\frac{16}{2.17}\)

X=16

12 tháng 4 2017

17 - 1= 16

= > x = 16

 tk mình nha

16 tháng 12 2016

a)\(3\cdot5^{2n+1}-3\cdot25^n=300\)

\(3\cdot5^{2n}\cdot5-3\cdot25^n=300\)

\(15\cdot25^n-3\cdot25^n=300\)

\(25^n\cdot12=300\)

\(25^n=25\)

\(\Rightarrow n=1\)

b)\(f\left(x\right)=6x^4-2x^3+5=5\)

\(6x^4-2x^3=0\)

\(6x^4=2x^3\)

\(3x^4=x^3\)

\(3x^4-x^3=0\)

\(x^3\left(3x-1\right)=0\)

\(\Rightarrow x^3=0\) hoặc 3x-1=0

\(\Rightarrow x=0,3x=1\)

\(\Rightarrow x=0,x=\frac{1}{3}\)(loại vì \(x\in N\))

Vậy x=0