Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ƯCLN ( 123456789; 987654321)
123456789 = \(^{3^2}\) x 13717421
987654321 = \(^{3^2+17^2}\) x 379721
=> ƯCLN ( 123456789; 987654321) = 9
b) Vì 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 chia hết cho 9 nên a và b là những số chia hết cho 9.
Mặt khác: a + b + 1111111110 = (\(^{10^{10}}\) - 10) : 9
Và 10b + a = 999999999 = \(^{10^{10}}\) - 1
Từ đó: b - 8a = 9
Vì ƯCLN (a;b) = 9
Ta có: ƯCLN (a;b) , BCNN (a;b) = ab
Mặt khác a : 9 = 13717421 = 11 x 1247038 + 3 = 11x + 3
Và b = 11y + 5
Vậy số dư khi chia BCNN (a;b) cho 11 là 4
a) ƯCLN ( 123456789; 987654321)
123456789 = 3232 x 13717421
987654321 = 32+17232+172 x 379721
=> ƯCLN ( 123456789; 987654321) = 9
b) Vì 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 chia hết cho 9 nên a và b là những số chia hết cho 9.
Mặt khác: a + b + 1111111110 = (10101010 - 10) : 9
Và 10b + a = 999999999 = 10101010 - 1
Từ đó: b - 8a = 9
Vì ƯCLN (a;b) = 9
Ta có: ƯCLN (a;b) , BCNN (a;b) = ab
Mặt khác a : 9 = 13717421 = 11 x 1247038 + 3 = 11x + 3
Và b = 11y + 5
Vậy số dư khi chia BCNN (a;b) cho 11 là 4
a chia 9 dư r1 => a = 9p + r1 ( p là thương trong phép chia a cho 9 )
b chia 9 dư r2 => b = 9q + r2 ( q là thương trong phép chia b cho 9 )
Khi đó : ab = ( 9p + r1 )( 9q + r2 )
= 81pq + 9pr2 + 9qr1 + r1r2
gồi đến đây không biết trình bày sao :v nhờ các idol làm tiếp dùm em :))
p:15 dư 7 và p:6 dư 4
=> p+8 sẽ chia hết cho cả 15 và 6
=> p+8 là BC (15,6)
BCNN (15,6)=30
=> p+8=30k (k thuộc N*)
=> p+8 sẽ chia hết cho 30
=> p:30 sẽ dư 22 (30-8=22)
Đáp số: Dư 22
Gọi Số bị chia là a; số chia là b; thương là q và dư là r
Theo đề ra; ta có 2 điều sau:
\(a=b.q+r\)(1)
\(a+15=\left(b+5\right).q+r\)(2)
Lấy pt (2) - pt (1) theo vế ta được :
\(a+15-a=\left(b+5\right)q+r-\left(bq+r\right)\)
\(\Rightarrow15=5q\Rightarrow q=3\)
Vậy thương cần tìm là 3.
Gọi số bị chia, số chia, thương và số dư lần lượt là a, b, c, d.
Khi đó ta có: a : b = c (dư d)
<=> a = c.b + d
<=> (a + 15) : (b + 5 )= c (dư d)
=> a + 15 = c.(b + 5) + d
=> a + 15 = c.b + c.5 + d
Mà a = c.b + d nên a + 15 = c.b + c.5 + d
=> a + 15 = c.b + d + 15
=> a + 15 = c.b + c.5 + d
=> 15 = c.5
=> c = 3
Vậy thương của phét chia đó là 3
Ta có :
a = 4k1 + 3 ( k1 \(\in\)N )
a = 9k2 + 5 ( k2 \(\in\)N )
\(\Rightarrow\)a + 13 \(⋮\)4 ; 9
\(\Rightarrow\)a + 13 \(\in\)BC ( 4 ; 9 )
BCNN ( 4 ; 9 ) = 36
\(\Rightarrow\)a + 13 = B ( 36 ) = 36k
\(\Rightarrow\)a + 13 = 36k ( k \(\in\)N )
\(\Rightarrow\)a = 36k - 13
\(\Rightarrow\)a = 36k - 36 + 23
\(\Rightarrow\)a = 36 . ( k - 1 ) + 23
vậy a chia 36 dư 23