K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

Ta có : 

\(S=1+5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)

\(\Rightarrow S=1+\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)

\(\Rightarrow S=1+5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+5^7\left(1+5+5^2\right)\)

\(\Rightarrow S=1+5.31+5^4.31+5^7.31\)

\(\Rightarrow S=1+31\left(5+5^4+5^7\right)\)

Vậy \(S:31\)dư \(1\)

8 tháng 7 2018

\(S=1+5+5^2+5^3+...+5^9\)

Đặt  \(A=5+5^2+5^3+...+5^9\)

            \(=\left(5+5^2+5^3\right)+...+\left(5^7+5^8+5^9\right)\)

             \(=\left(5.1+5.5+5.5^2\right)+...+\left(5^7.1+5^7.5+5^7.5^2\right)\)

               \(=5.\left(1+5+5^2\right)+...+5^7.\left(1+5+5^2\right)\)

                \(=5.31+...+5^7.31\)

                 \(=\left(5+5^7\right).31\)

Thay A vào S, ta có:

\(S=1+\left(5+5^7\right).31\)

Vì \(\left(5+5^7\right).31⋮31\)mà    \(S=1+\left(5+5^7\right).31\)

Suy ra  S  chia cho 31 dư 1.

hok tốt nha !

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

13 tháng 2 2022

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

24 tháng 1 2021

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó  nên 

       * Vậy A chia hết cho 27

AH
Akai Haruma
Giáo viên
13 tháng 12 2022

Lời giải:
a. $(x-3)(y+1)=5=1.5=5.1=(-1)(-5)=(-5)(-1)$
Vì $x-3, y+1$ cũng là số nguyên nên ta có bảng sau:

b.

$A=21+5+(5^2+5^3)+(5^4+5^5)+....+(5^{98}+5^{99})$

$=26+5^2(1+5)+5^4(1+5)+....+5^{98}(1+5)$

$=2+24+(1+5)(5^2+5^4+...+5^{98}$

$=2+24+6(5^2+5^4+....+5^{98})=2+6(4+5^2+5^4+...+5^{98})$

$\Rightarrow A$ chia $6$ dư $2$.

21 tháng 11 2021

\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{2020}+5^{2021}\right)\\ =5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{2019}\left(5+5^2\right)\\ =5+\left(5+5^2\right)\left(5+5^3+...+5^{2019}\right)\\ =5+31\left(5+5^3+...+5^{2019}\right)\)

Vậy BT chia 31 dư 5

7 tháng 10 2023

\(A=5+5^2+5^3+...+5^{20}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{18}+5^{19}+5^{20}\right)\)

\(A=30+5^3\cdot31+...+5^{18}\cdot31\)

\(A=30+31\cdot\left(5^3+5^6+...+5^{18}\right)\)

Mà: \(31\cdot\left(5^3+5^6+...+5^{18}\right)\) ⋮ 31

\(\Rightarrow A=30+31\cdot\left(5^3+5^6+...+5^{18}\right)\) chia cho 31 dư 30 

7 tháng 10 2023

A = 5 + 52 + 53 +...+ 520

A = 520 + 519 + 518 +...+ 53 + 52 + 5

A = (520 + 519 + 518) + (517 + 516 + 515) +...+ (55 + 54 + 53) + (52+ 5)

A = 518.( 52 + 5 + 1) + 515.(52 + 5 + 1) +...+ 53.(52+ 5 + 1) + (25 + 5)

A = 518. 31 + 515.31 +...+ 53.31 + 30

A = 31.(518 + 515 +...+ 53) + 30

31 ⋮ 31 ⇒ 31.(518 + 515 +...+53) ⋮ 31 mà 30 : 31 = 0 dư 31 

Vậy A : 31 dư 30 

 

29 tháng 6 2023

0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)

\(b,S6=1-5^{100}\\ 1-S6=5^{100}\) 

=> 5100 chia 6 du 1

 

29 tháng 6 2023

e đang cần gấp, có ai đến giúp e ko?

29 tháng 11 2023

Bài 1:

a: \(S=1-5+5^2-5^3+...+5^{98}-5^{99}\)

=>\(5S=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)

=>\(6S=5-5^2+5^3-5^4+...+5^{99}-5^{100}+1-5+5^2-5^3+...+5^{98}-5^{99}\)

=>\(6S=-5^{100}+1\)

=>\(S=\dfrac{-5^{100}+1}{6}\)

b: S=1-5+52-53+...+598-599 là số nguyên

=>\(\dfrac{-5^{100}+1}{6}\in Z\)

=>\(-5^{100}+1⋮6\)

=>\(5^{100}-1⋮6\)

=>\(5^{100}\) chia 6 dư 1