Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là \(\overline{aabb}=n^2\)
(\(1\le a\le9;0\le b\le9;a,b\in n\))
Ta có
\(n^2=11\left(100a+b\right)=11\left(99a+a+b\right)\left(1\right)\)
Xét thấy \(\overline{aabb}\) chia hết cho 11
=> a+b chia hết cho 11
Mà \(1\le a+b\le18\)
=> a+b=11 (2)
Thay (2) vào (1) ta có
\(n^2=11^2\left(9a+1\right)\)
=> 9a+1 phải là số chính phương
Thử a=1;2;3;....;9 ta thấy chỉ có 7 thỏa mãn vì 9x7+1=64=82
=>b=4
Vậy số cần tìm là 7744
Giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
+giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
Tỉm một số chính phương có bốn chữ số sao cho hai chữ số đầu giống nhau , hai chữ số cuối giống nhau
Giả sử aabb=n^2
<=> a x10^3+ax10^2+bx10 +b=n^2
<=> 11 (100a+b)=n^2
=> n^2 chia hết cho 11
=> n chia hết cho 11
Do n^2 có 4 chữ số nên
32<n<100
=> n=33, n=44, n=55,...n=99
Thủ vào thì n=88 là thõa mãn
Vậy số đó là 7744
Giả sử aabb=n2
<=> a . 103 + a . 102 + b . 10 + b = n2
<=>11 ( 100a + b ) = n2
=>n2 chia hết cho 11
=> n chia hết cho 11
Do n2 có 4 chữ số nên
32 < n < 100
=> n = 33 , n = 44 , n = 55 ,... n = 99
Thử vào thì n = 88 là thỏa mãn
Vậy số đó là 7744