Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{4a5b}\)chia hết cho \(45\)nên \(\overline{4a5b}\)chia hết cho \(5\)và \(9\).
\(\overline{4a5b}\)chia hết cho \(5\)nên \(b=0\)hoặc \(b=5\).
Với \(b=0\): \(\overline{4a50}\)chia hết cho \(9\)nên \(4+a+5+0=9+a\)chia hết cho \(9\)nên \(a=0\)hoặc \(a=9\).
Với \(b=5\): \(\overline{4a55}\)chia hết cho \(9\)nên \(4+a+5+5=14+a\)chia hết cho \(9\)nên \(a=4\).
Vậy ta có \(3\)cặp số \(\left(a,b\right)\)thỏa mãn là: \(\left(0,0\right),\left(9,0\right),\left(4,5\right)\).
Vì 9, 5 nguyên tố cùng nhau
=> 999...999 + x vừa chia hết cho 9 vừa chia hết cho 5 sẽ chia hết cho 45
Để 999...999 + x chia hết cho 5 thì 999...999 + x tận cùng là 0 hoặc 5. Vậy x \(\in\) {1, 6, 11, 16, 21, ....}
Để 999...999 + x chia hết cho 9 thì 999...999 + x có tổng các chữ số là 1 số chia hết cho 9
Ta có 999...999 là một số chia hết cho 9 ( 9+9+9+9+......+9 chia hết cho 9 )
=> x phải chia hết cho 9
Số nhỏ nhất chia hết cho 9 trên tập hợp trên là 36
Vậy x = 36
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
theo đề bài ta có : a : 2 dư 1 nên a chia hết cho 3
a : 5 dư 1 nên a chia hết cho 6
a :7 dư 3 nên a chia hết cho 10
vậy a chia hết cho 3 ; 6 ;10 và a nhỏ nhất
Mà BCNN ( 3 , 6 , 10 ) = 30 nên a = 30
Gọi số cần tìm là a
Do a chia 5 dư 1 nên a-1 chia hết cho 5
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5
=> a+9 chia hết cho 5 (1)
Do a chia 7 dư 5 nên a-5 chia hết cho 7
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7
=> a+9 chia hết cho 7 (2)
Từ (1) và (2) suy ra a+9 là bội của 5 và 7
mà a nhỏ nhất nên a+9 = BCNN (5; 7) = 35
=> a = 26
Vậy số phải tìm là 26
Chúc bạn thành công
1.Tìm số tự nhiên nhỏ nhất khác 0 mà chia hết cho cả 2,3,4,5 và 6 là số 60
số đó là 301
bạn vào câu hỏi tương tự xem cách giải nhé
tick nha