Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đa thức \(x^4+ax^2+1\) là \(f\left(x\right)\). Theo bài ra ta có phương trình:
\(f\left(-1\right)=\left(-1\right)^4+a\left(-1\right)^2+1=0\)
<=>\(f\left(-1\right)=1+a+1=0\)
\(\Leftrightarrow f\left(-1\right)=a=-2\)
\(\Rightarrow a=-2\)
Vậy \(a=-2\)
b)
Gọi đa thức \(3x^2+ax+27\) là \(f\left(x\right)\), \(Q\left(x\right)\) là thương của \(f\left(x\right)\) khi chia cho \(x+5\) được dư là \(2\), theo bài ra ta có phương trình:
\(f\left(x\right)=3x^2+ax+27=\left(x+5\right).Q\left(x\right)+2\) (*)
\(x=-5\) là nghiệm của \(x+5\), thay nghiệm x=-5 vào (*), ta được:
\(f\left(-5\right)=3.\left(-5\right)^2+a\left(-5\right)+27=\left(-5+5\right).Q\left(x\right)+2\)
<=>\(f\left(-5\right)=75-5a+27=2\)
<=>\(f\left(-5\right)=-5a=-100\)
<=>\(f\left(-5\right)=a=20\)
=> \(a=20\)
Vậy \(a=20\)
Chúc bạn học tốt! Cứu bạn rồi đó nghen! ^^
a)
Gọi \(x^4+ax^2+1\) là \(f\left(x\right)\). Theo bài ra ta có PT:
\(f\left(-1\right)=\left(-1\right)^4+a\left(-1\right)^2+1=0\)
\(\Leftrightarrow f\left(-1\right)=1+a+1=0\)
\(\Leftrightarrow f\left(-1\right)=a=-2\)
\(\Leftrightarrow a=-2\)
Vậy a=-2
Gọi \(Q\left(x\right)\) là thương khi chia \(f\left(x\right)\) cho \(x+5\) được dư là 2. Theo bài ra ta có PT:
\(f\left(x\right)=3x^2+ax+27=\left(x+5\right).Q\left(x\right)+2\)
<=>\(f\left(-5\right)=3.\left(-5\right)^2+a\left(-5\right)+27=0.Q\left(x\right)+2=2\)
\(\Leftrightarrow f\left(-5\right)=75-5a+27=2\)
\(\Leftrightarrow f\left(-5\right)=-5a=-100\)
\(\Leftrightarrow f\left(-5\right)=a=20\)
\(\Leftrightarrow a=20\)
Vậy a=20
Chúc bạn học thật giỏi! ^^
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{3x^2-4.5x+\left(a+4.5\right)x-1.5a-6.75+1.5a+33.75}{2x-3}\)
\(=1.5x+\left(a+4.5\right)+\dfrac{1.5a+33.75}{2x-3}\)
Để dư là 2 thì 1,5a+33,75=2
=>1,5a=-31,75
=>a=-127/6