Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A : 29 dư 13
=> A = 29k + 13 (k N) (1)
Lại có: A : 31 dư 27
=> A = 31q + 27 (q N) (2)
Từ (1) và (2) => 29k + 13 = 31q + 27 => 29k + 13 = 29q + 2q + 27
=> 29k - 29q = 2q + 27 - 13
=> 29(k - q) = 2q + 14
Vì 2q + 14 là số chẵn => 29(k - q) cũng là số chẵn => k - q ≥ 2 (vì 29 là lẻ mà lẻ x chẵn = chẵn => k - q là chẵn)
Vì A nhỏ nhất => q nhỏ nhất (A = 31q + 27)
=> 2q = 29(k - q) - 14 nhỏ nhất
=> k - q nhỏ nhất
=> k - q = 2
=> 2q = 29.2 - 14 = 58 - 14 = 44
=> q = 22
=> A = 31 . 22 + 27 = 709
Giải:
Ta biết: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và \(8b-9a=31\) \(\left(a;b\in N\right)\)
Theo đề bài: \(8b-9a=31\)
\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\)
\(\Leftrightarrow\dfrac{a-1}{8}\in N\)
\(\Leftrightarrow\left(a-1\right)⋮8\)
\(\Leftrightarrow a=8k+1\left(k\in N\right)\)
Khi đó:
\(b=\dfrac{31+9.\left(8k+1\right)}{8}=9k+5\)
\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
\(\Leftrightarrow\left\{{}\begin{matrix}11.\left(9k+5\right)< 17.\left(8k+1\right)\Leftrightarrow k>1\\29.\left(8k+1\right)< 23.\left(9k+5\right)\Leftrightarrow k< 4\end{matrix}\right.\)
\(\Rightarrow1< k< 4\)
\(\Rightarrow k\in\left\{2;3\right\}\)
Với \(\left[{}\begin{matrix}k=2\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\\k=3\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(17;23\right);\left(25;32\right)\)
tìm các số nguyên a ,b thỏa mãn điều kiện:\(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}và8b-9a=31\)
Tìm số tự nhiên a,b thỏa mãn điều kiện:
\(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và 8b-9a=31
Từ \(8b-9a=31\Leftrightarrow8b=9a+31\)
Ta có: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\Rightarrow\left\{{}\begin{matrix}17a>11b\\29a< 23b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}17.8a>11.8b\\29.8a< 23.8b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}136a>11\left(9a+31\right)\\232a< 23\left(9a+31\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}136a>99a+341\\232a< 207a+713\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}37a>341\\25a< 713\end{matrix}\right.\)
\(\Rightarrow\dfrac{341}{37}< a< \dfrac{713}{25}\)
Mà a là số tự nhiên \(\Rightarrow9< a< 29\) (1)
Lại có \(8b-9a=31\Leftrightarrow8\left(b-a\right)=a+31\)
\(\Rightarrow a+31\) chia hết cho 8 \(\Rightarrow a\) chia 8 dư 1 (2)
(1);(2) \(\Rightarrow\left[{}\begin{matrix}a=17\\a=25\end{matrix}\right.\)
Với \(a=17\Rightarrow b=23\)
Với \(a=25\Rightarrow b=32\)
Do 2n+12n+1 là số chính phương lẻ nên 2n+12n+1 chia 88 dư 11,vậy nn là số chẵn.
Vì 3n+13n+1 là số chính phương lẻ nên 3n+13n+1 chia 88 dư 11
⟹3n⋮8⟹3n⋮8
⟺n⋮8(1)⟺n⋮8(1)
Do 2n+12n+1 và 3n+13n+1 đều là số chính phương lẻ có tận cùng là 1;5;91;5;9.do đó khi chia cho 55 thì có số dư là 1;0;41;0;4
Mà (2n+1)+(3n+1)=5n+2(2n+1)+(3n+1)=5n+2 ,do đo 2n+12n+1 và 3n+13n+1 khi cho cho 55 đều dư 11
⟹n⋮5(2)⟹n⋮5(2)
Từ (1) và (2)⟹n⋮40⟹n⋮40
Vậy n=40kn=40k thì ...
mình lớp 5 mong bạn tích
câu hỏi của nguyễn thùy trang á tìm đi có đấy(câu trả lời)
số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N ) nên
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q )
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài