Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rõ ràng đa thức \(x^3-1\) chia hết cho đa thức \(x^2+x+1\).
Ta tách: \(x^9+x^6+x^3+1=\left(x^9-1\right)+\left(x^6-1\right)+\left(x^3-1\right)+4=\left(x^3-1\right)\left(x^6+x^3+1\right)+\left(x^3-1\right)\left(x^3+1\right)+\left(x^3-1\right)+4\).
Từ đây suy ra đa thức đó chia cho đa thức \(x^2+x+1\) được đa thức dư là 4.
Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?
Ta có đa thức x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 chưa (x + 1) nên phần dư là một hằng số
Gọi thương là Q(x) và dư r. Khi đó với mọi x ta có
x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 = Q(x)(x + 1) + r (1)
Thay x = -1 vào (1) ta được
( ( - 1 ) 2 + 3 . ( - 1 ) + 2 ) 5 + ( ( - 1 ) 2 – 4 ( - 1 ) – 4 ) 5 – 1 = Q(x).(-1 + 1) + r
r = 0 5 + 1 5 – 1 ó r = 0
vậy phần dư của phép chia là r = 0.
đáp án cần chọn là: C
\(\dfrac{f\left(x\right)}{2x+1}=\dfrac{\left(2x+1\right)\left(x^2-x+1\right)}{2x+1}=x^2-x+1\)
a) A = ( x 2 – 6x)B.
b) A = (-x – 8)B + 2
c) A = (x + 3)B + 6.
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Bài 1:
Ta có: \(5x^3-3x^2+2x+a⋮x+1\)
\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)
\(\Leftrightarrow a-10=0\)
hay a=10
Do đa thức chia có bậc 2
nên đa thức dư là nhị thức bậc nhất
Đặt đa thức dư là \(ax+b\)
Đa thức thương là \(Q_{\left(x\right)}\)
\(\Rightarrow x+x^5+x^{10}+x^{20}=\left(x^2-1\right)Q_{\left(x\right)}+ax+b\\ \Leftrightarrow\left(x+1\right)\left(x-1\right)Q_{\left(x\right)}+ax+b\)
Đẳng thức trên luôn đúng \(\forall x\)
nên lần lượt cho \(x=1;x=-1\)
\(\text{Ta được : }\left\{{}\begin{matrix}a+b=4\\b-a=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{4-0}{2}\\b=\dfrac{4+0}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\)
\(\Rightarrow ax+b=2x+2\)
Vậy số dư trong phép chia \(f_{\left(x\right)};g_{\left(x\right)}\)
là \(2x+2\)