Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2y^2+3xy-x-y+3=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y-1\right)=-3\)
\(x^2+2y^2+3xy=5\)
=>\(x^2+xy+2xy+2y^2=5\)
=>\(x\left(x+y\right)+2y\left(x+y\right)=5\)
=>\(\left(x+y\right)\left(x+2y\right)=5\)
=>\(\left(x+y\right)\left(x+2y\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
TH1: \(\left\{{}\begin{matrix}x+y=1\\x+2y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y-x-2y=1-5=-4\\x+y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=-4\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=1-y=1-4=-3\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=5\\x+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y-x-2y=5-1\\x+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=4\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-4\\x=5-y=5-\left(-4\right)=9\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}x+y=-1\\x+2y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y-x-2y=-1-\left(-5\right)\\x+2y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=-1+5=4\\x+2y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\x=-5-2y=-5-2\cdot\left(-4\right)=-5+8=3\end{matrix}\right.\)
TH4: \(\left\{{}\begin{matrix}x+y=-5\\x+2y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y-x-2y=-5-\left(-1\right)\\x+y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=-5+1=-4\\x+y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=4\\x=-5-y=-5-4=-9\end{matrix}\right.\)
\(x^2+2y^2+3xy-2x-4y+3=0\)
\(\Leftrightarrow\left(x+2y\right)\left(x+y-2\right)=-3\)
<=> x2 + (3y - 2)x + (2y2 - 4y + 3) = 0 (1)
Coi (1) là phương trình bậc 2 ẩn x
\(\Delta\) = (3y - 2)2 - 4 (2y2 - 4y + 3) = 9y2 - 12y + 4 - 8y2 + 16y - 12 = y2 + 4y - 8
Để (1) có nghiệm x; y nguyên <=> \(\Delta\) là số chính phương
<=> y2 + 4y - 8 = k2 (k nguyên)
<=> y2 + 4y + 4 - k2 = 12
<=> (y +2)2 - k2 = 12 <=> (y + 2 + k).(y + 2 - k) = 12
=> (y + 2 + k) \(\in\) Ư(12) = {12;-12;3;-3;4;-4;6;-6;2;-2;1;-1}
y+2+k | 12 | -12 | 1 | -1 | 3 | -3 | 4 | -4 | 2 | -2 | 6 | -6 |
y+2-k | 1 | -1 | 12 | -12 | 4 | -4 | 3 | -3 | 6 | -6 | 2 | -2 |
k | 13/2 (L) | -11/2 (L) | -11/2 (L) | 11/2(L) | -1/2(L) | 1/2(L) | 1/2(L) | -1/2(L) | -2 | 2 | 2 | -2 |
y | 2 | -6 | 2 | -6 |
Vậy y = -6 hoặc y = 2
Thay y = -6 vào (1) => x2 -20x + 99 = 0 <=> x = 11 hoặc x = 9
Thay y = 2 vào (1) => x2 + 4x + 3 = 0 <=> x = -1 hoặc x = -3
Vậy ...
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
\(y=\sqrt{x^2+2x+4}\)
\(\Leftrightarrow y^2=x^2+2x+4\)
\(\Leftrightarrow y^2=\left(x+1\right)^2+3\)
\(\Leftrightarrow\left(y-x-1\right)\left(y+x+1\right)=3\)
Đến đây bạn lập bảng ạ
ta có pt
<=>\(x^2+xy+2y^2+2xy-\left(x+y\right)+3=0\)
<=>\(x\left(x+y\right)+2y\left(x+y\right)-\left(x+y\right)=-3\)
<=>\(\left(x+y\right)\left(x+2y-1\right)=-3\)
đến đây thì xét nghiệm nguyên của 3 và tự giải nhé !
^_^