K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2015

<=> x2 + (3y - 2)x + (2y2 - 4y + 3) = 0  (1)

Coi (1) là phương trình bậc 2 ẩn x

\(\Delta\) = (3y - 2)2 - 4 (2y2 - 4y + 3) = 9y2 - 12y + 4 - 8y2 + 16y - 12 = y2 + 4y - 8 

Để (1) có nghiệm x; y nguyên <=> \(\Delta\) là số chính phương 

<=> y2 + 4y - 8  = k2 (k nguyên)

<=> y2 + 4y + 4 - k2 = 12

<=> (y +2)2 - k2 = 12 <=> (y + 2 + k).(y + 2 - k) = 12

=> (y + 2 + k)  \(\in\) Ư(12) = {12;-12;3;-3;4;-4;6;-6;2;-2;1;-1}

y+2+k12-121-13-34-42-26-6
y+2-k1-112-124-43-36-62-2
k13/2 (L)-11/2 (L)-11/2 (L)11/2(L)-1/2(L)1/2(L)1/2(L)-1/2(L)-222-2
y        2-62-6

Vậy y = -6 hoặc y = 2

Thay y = -6 vào (1) => x2 -20x + 99 = 0 <=> x = 11 hoặc x = 9

Thay y = 2 vào (1) => x2 + 4x + 3 = 0 <=> x = -1 hoặc x = -3

Vậy ...

 

15 tháng 4 2016

Nhân 4 vào pt trên ta được 4x2+8y2+12xy-8x-16y+12=0

          tương đương 4x2+9y2+4+12xy-8x-12y-y2-4y+8=0

                             (2x+3y-2)2 -(y+2)2 = -12

                                    (x+y-2)(x+2y)=-3

  • Ta có các hệ pt :x+y-2=3 ; x+2y=-1
  • x+2y-2= -3 ; x+2y =1

         .giải hệ rồi suy ra nghiệm (x,y)=(-3,2);(11,-6)

  •  
22 tháng 1 2017

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

22 tháng 1 2017

giải zõ hộ

25 tháng 12 2016

\(x^2+2y^2+3xy-2x-4y+3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x+y-2\right)=-3\)

25 tháng 12 2016

đề đúg hay sai vậy

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Bài 1:
$x^2y+4y=x+6$

$\Leftrightarrow y(x^2+4)=x+6$

$\Leftrightarrow y=\frac{x+6}{x^2+4}$

Để $y$ nguyên thì $\frac{x+6}{x^2+4}$ nguyên

$\Rightarrow x+6\vdots x^2+4(1)$

$\Rightarrow x^2+6x\vdots x^2+4$

$\Rightarrow (x^2+4)+(6x-4)\vdots x^2+4$

$\RIghtarrow 6x-4\vdots x^2+4(2)$

Từ $(1); (2)\Rightarrow 6(x+6)-(6x-4)\vdots x^2+4$

$\Rightarrow 40\vdots x^2+4$

$\Rightarrow x^2+4\in\left\{4; 5; 8; 10; 20;40\right\}$ (do $x^2+4$ là số nguyên $\geq 4$)

$\Rightarrow x\in\left\{0; \pm 1; \pm 2; \pm 4; \pm 6\right\}$

Đến đây thay vào tìm $y$ thôi.

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Bài 2:
 

Lấy PT(1) trừ PT (2) theo vế thu được:

$3x=5y-2$
$\Leftrightarrow x=\frac{5y-2}{3}$

Thay vào PT(1) thì:

$(2.\frac{5y-2}{3}+1)(y+2)=9$

$\Leftrightarrow 10y^2+19y-29=0$

$\Leftrightarrow (y-1)(10y+29)=0$

$\Rightarrow y=1$ hoặc $y=\frac{-29}{10}$

Với $y=1\Rightarrow x=\frac{5y-2}{3}=1$

Với $y=\frac{-29}{10}\Rightarrow x=\frac{5y-2}{3}=\frac{-11}{2}$

28 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)

\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)

 

24 tháng 11 2017

2x3-x2y+3x2+2x-y=2

(2x3+2x)-(x2y+y)+(3x2+3)=5

2x(x2+1)-y(x2+1)+3(x2+1)=5

(x2+1)(2x-y+3)=5

Mà x2>=0 => x2+1>0

=> (x2+1)(2x-y+3)=5=1.5=5.1

•x2+1=1 và 2x-y+3=5 => x=0; y=-2

•x2+1=5 và 2x-y+3=1=> x=2;y=6 hoặc x=-2; y=-2

Vậy (x;y) là (0;-2);(2;6);(-2;-2)

12 tháng 4 2019

Xét phương trình đầu: \(x^2-\left(3y+2\right)x+2y^2+4y=0\)(1)

Xem x là ẩn và y là tham số:

\(\Delta=\left(3y+2\right)^2-4\left(2y^2+4y\right)=y^2-4y+4=\left(y-2\right)^2\)

Phương trình (1) có 2 nghiệm 

\(x_1=\frac{\left(3y+2\right)-\left(y-2\right)}{2}=y+2\)

\(x_2=\frac{3y+2+\left(y-2\right)}{2}=2y\)

+) Với x =y+2 <=> y=x-2Thế vào phương trình (2) Ta có:

\(\left(x^2-5\right)^2=9\Leftrightarrow\orbr{\begin{cases}x^2-5=-3\\x^2-5=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=2\\x^2=8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm\sqrt{2}\\x=\pm2\sqrt{2}\end{cases}}\)

thế vào tìm y

+) Với x=2y thế vào ta có: \(\left(x^2-5\right)^2=x+5\Leftrightarrow x^4-10x^2-x+20=0\)

\(\Leftrightarrow\left(x^4-9x^2+\frac{81}{4}\right)-\left(x^2+x+\frac{1}{4}\right)=0\Leftrightarrow\left(x^2-\frac{9}{4}\right)^2-\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)

Em làm tiếp nhé

4 tháng 5 2018

\(PT\Leftrightarrow\left(x+y\right)\left(x+3y\right)-2\left(x+y\right)-5=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+3y-2\right)=5\)

=> phương trình ước số