\(xyz=2\left(x+y+z\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2018

\(\left(1+x\right)\left(y+z\right)=xyz+2\)

\(\Leftrightarrow\)\(xy+xz+y+z=xyz+2\)

\(\Leftrightarrow\)\(xyz-xy-xz+x=y+z-2+x\)

\(\Leftrightarrow\)\(x\left(yz-y-z+1\right)=x+y+z-2\)

\(\Leftrightarrow\)\(x\left(y-1\right)\left(z-1\right)=x+\left(y-1\right)+\left(z-1\right)\)

Đặt \(a=x;b=y-1;c=z-1\) pt \(\Leftrightarrow\)\(abc=a+b+c\)

Ta có : \(a\ge1;b\ge0;c\ge0\) ( do \(x,y,z\ge1\) ) 

Giả sử \(b=0\) pt \(\Leftrightarrow\)\(a+c=0\) ( vô lí vì \(a+c\ge1\) ) 

Tương tự, giả sử \(c=0\) pt \(\Leftrightarrow\)\(a+b=0\) ( vô lí vì \(a+b\ge1\) ) 

\(\Rightarrow\)\(a,b,c\ge1\) và \(abc=a+b+c\)

Đến đây giả sử \(a\ge b\ge c\) đc r vì a, b, c có vai trò như nhau 

Giải r nhưng quên link, có j e ib gửi link khác cho :)) 

Chúc a học tốt ~ 

10 tháng 11 2018

cảm ơn e nhé, alibaba nguyễn cx giúp anh r

6 tháng 12 2017

1/ Ta chứng minh với \(x>6\)thì \(10.2^x>13x^2\) cái này dùng quy nạp chứng minh được:

Từ đây ta xét với \(x>6\)thì

\(\Rightarrow\hept{\begin{cases}10.2^6-13x^2>0\\10-3x< 0\end{cases}}\)

\(\Rightarrow\)Phương trình vô nghiệm.

Giờ chỉ cần kiểm tra \(x=1;2;3;4;5;6\) xem cái nào thỏa mãn nữa là xong.

6 tháng 12 2017

2/ \(3^x+1=\left(y+1\right)^2\)

\(\Leftrightarrow3^x=y\left(y+2\right)\)

Với \(y=1\)

\(\Rightarrow x=1\)

Với \(y>1\)

Với \(y⋮3\)\(\Rightarrow y+2⋮̸3\)

Với \(y+2⋮3\)\(\Rightarrow y⋮̸3\)

Vậy \(x=1,y=1\)

11 tháng 7 2017

câu a)

nhân cả 3 phương trình

ta được

\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)

Vế trái là 1 số chính phương nên Vp cũng là số chính phương

6 không phải là số chính phương nên

\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6

lập bảng 

đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa

câu b)

từ hpt =>5y+3=11z+7

<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R

y  nguyên dương nên (11z+4)thuộc bội(5) và z_min

=> z=1 

=> y=3

=> x =18 (t/m)

câu c)

qua pt (1) =>x=20-2y-3z

thay vao 2) <=> y+5z=23

y;z là nguyên dương mà 5z chia hêt cho 5 

=> z={1;2;3;4}

=> y={18;13;8;3}

=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé

chọn x=2; y=3; z=4 (t/m)

Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com

11 tháng 7 2017

Bạn giải nốt giùm mình câu a được ko?

4 tháng 9 2019

a) ĐKXĐ: \(x;y>0\)  

 Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

\(\Rightarrow\frac{4y}{4xy}+\frac{4x}{4xy}=\frac{xy}{4xy}\)

\(\Rightarrow4x+4y-xy=0\)

\(\Rightarrow x\left(4-y\right)=-4y\)

\(\Rightarrow x=\frac{-4y}{4-y}=\frac{-4\left(y-4\right)-16}{-\left(y-4\right)}\)

\(\Rightarrow x=4-\frac{16}{4-y}\)

Để x nguyên dương =>\(\hept{\begin{cases}\frac{16}{4-y}< 0\\\left(4-y\right)\inƯ\left(16\right)\end{cases}}\)

\(\Rightarrow4-y\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

Tìm nốt y và thay vào tìm ra x

5 tháng 9 2019

a/ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

Không mất tính tổng quát giả sử: \(x\ge y\)

\(\frac{1}{4}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Leftrightarrow0< y\le8\)

\(\Rightarrow y=\left\{1;2;3;4;5;6;7;8\right\}\)làm nốt

18 tháng 12 2019

Câu hỏi của Trương Tiền Phương - Toán lớp 9 - Học toán với OnlineMath