K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Hỏi đáp Toán

ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi

11 tháng 11 2016

vậy nghiệm nguyên dương của PT là bao nhêu

17 tháng 7 2016

 <=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0 
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0 
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0 
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0 

Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0 
<=> x = 1/2y và 1/2y = 1 và z = 1. 
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.

17 tháng 7 2016

Quá dễ bằng 0

17 tháng 6 2019

Em chỉ giải 1 ví dụ thôi ạ , mấy cái còn lại giải theo cách tương tự

\(x^4+4y^4=2z^4\)

Dễ thấy \(x^4\)là số chẵn nên x là số chẵn

Đặt \(x=2a_1\left(a_1\inℕ^∗\right)\)

\(\Rightarrow\left(2a_1\right)^4+4y^4=2z^4\)

\(\Leftrightarrow16a_1^4+4y^4=2z^4\)

\(\Leftrightarrow8a_1^4+2y^4=z^4\)

Dễ thấy z4 chẵn nên z chẵn

Đặt \(z=2c_1\left(c\inℕ^∗\right)\)

Thì khi đó \(8a_1^4+2y^4=\left(2c_1\right)^4\)

\(\Leftrightarrow8a^4_1+2y^4=16c_1^4\)

\(\Leftrightarrow4a_1^4+y^4=8c_1^4\)

Dễ thấy y4 chẵn nên y chẵn

Đặt \(y=2b_1\left(b\inℕ^∗\right)\)

Khi đó pt \(4a_1^4+\left(2b_1\right)^4=8c_1^4\)

\(\Leftrightarrow4a^4_1+16b_1^4=8c_1^4\)

\(\Leftrightarrow a_1^4+4b_1^4=2c_1^4\)

Như vậy thì bộ số \(\left(a_1;b_1;c_1\right)\)là 1 nghiệm của pt đã cho

Chứng minh tương tự như vậy ta rút ra kết luận là x ; y ; z luôn chia hết cho \(2^n\left(n\in N\right)\)

Điều này chỉ đúng với x = y = z = 0

Mà pt đã cho cần có nghiệm nguyên dương nên x = y = z = 0 (loại )
Vậy pt vô nghiệm 

17 tháng 6 2019

VD 1 em có giải lúc trước trong trang Phương trình nghiệm nguyên rồi mà! 

VD2: Kí hiệu pt trên là (*)

Dễ thấy \(x^3⋮5\) nên x chia hết cho 5. Đặt \(x=5x_1\)

Phương trình trở thành: \(125x_1^3+5y^3=25z^3\Leftrightarrow25x_1^3+y^3=5z^3\) (1)

Dễ thấy \(y^3⋮5\Rightarrow y⋮5\) . Đặt \(y=5y_1\) . Phương trình (1) tương đương với:

\(25x_1^3+125y_1^3=5z^3\Leftrightarrow5x_1^3+25y_1^3=z^3\) (2)

Dễ thấy \(z^3⋮5\Rightarrow z⋮5\). Đặt \(z=5z_1\). Phương trình (2) tương đương với:

\(5x_1^3+25y_1^3=125z_1^3\Leftrightarrow x_1^3+5y_1^3=25z_1^3\)

\(\Rightarrow\text{Nếu (x;y;z) là nghiệm của (*)}\)

Thì \(\left(\frac{x}{5};\frac{y}{5};\frac{z}{5}\right)\) cũng là nghiệm của (*)

\(\Rightarrow\left(\frac{x}{5^k};\frac{y}{5^k};\frac{z}{5^k}\right)\text{ với }k\inℕ^∗\text{cũng là nghiệm của (*)}\)

Điều này chỉ xảy ra khi x = y = z = 0.

Mà nó không thỏa mãn đk x, y, z nguyên dương nên loại.

PT (*) vô nghiệm.