K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 11 2023

Lời giải:

a. Bạn xem lại đề. $2y-3y$ hay $2x-3y$ hay $2y-3x$?

b. $2xy-y-x=1$

$\Leftrightarrow y(2x-1)-x=1$

$\Leftrightarrow 2y(2x-1)-2x=2$

$\Leftrightarrow 2y(2x-1)-(2x-1)=3$

$\Leftrightarrow (2x-1)(2y-1)=3$

Do $x,y$ là số nguyên nên $2x-1,2y-1$ cũng là số nguyên. Ta có các TH sau:

TH1: $2x-1=1, 2y-1=3\Rightarrow x=1; y=2$

TH2: $2x-1=3; 2y-1=1\Rightarrow x=2; y=1$

TH3: $2x-1=-1; 2y-1=-3\Rightarrow x=0; y=-1$

TH4: $2x-1=-3; 2y-1=-1\Rightarrow x=-1; y=0$

15 tháng 8 2023

\(\Leftrightarrow x^2+2xy+y^2-xy-x^2y^2=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

VT là 1 số chính phương mà vế phải là tích 2 số tự nhiên liên tiếp

\(\Rightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\)

+ Với \(xy=0\Rightarrow\left(x+y\right)^2=x^2+y^2=0\Rightarrow x=y=0\)

+ Với \(xy+1=0\Rightarrow xy=-1\Rightarrow\left[{}\begin{matrix}x=1;y=-1\\x=-1;y=1\end{matrix}\right.\)

28 tháng 10 2016

chiu roi

ban oi

tk nhe

29 tháng 5 2020

\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)

Để PT có nghiệm nguyên thì \(\Delta\ge0\)

từ đó tìm được các giá trị nguyên của y, rồi tìm được x

6 tháng 3 2022

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra

7 tháng 10 2020

b) x2y + x + xy2 + y + 2xy = 9

xy(x + y + 2) + (x + y + 2) = 11

<=> (xy + 1)(x + y + 2) = 11

Xét các TH

+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9

+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)

<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)

+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)

+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)

2 tháng 7 2017

Áp dụng bất đẳng thức x^2+y^2 ≥ 2xy  nên ta có x^2+y^2+xy ≥ 3xy
Mà x^2+y^2+xy=x^2y^2 ≥ 0 nên suy ra x^2y^2+3xy ≤ 0 ⟺−3 ≤ xy ≤ 0
Vì x,y nguyên nên xy nguyên, vậy nên xy∈{−3,−2,−1,0}
Trường hợp xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)
Trường hợp xy=0 ta tìm được nghiệm (0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm