K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2023

\(A=\left(n+5\right)^2-\left(n-6\right)^2\)

\(=\left(n+5-n+6\right)\left(n+5+n-6\right)\)

\(=11\left(2n-1\right)\)

Để \(A\) là số nguyên tố thì \(11\left(2n-1\right)\) là số nguyên tố

mà 11 là số nguyên tố \(\Rightarrow2n-1=1\Rightarrow n=1\left(tm\right)\) 

#\(Urushi\)

Ta có : \(A=3n^2-16n-12\)

\(=3n\left(n-6\right)+2\left(n-6\right)\)

\(=\left(n-6\right)\left(3n+2\right)\)

Vì n là số nguyên dương nên \(n-6< 3n+2\)

Vì A là số nguyên tố nên A chỉ có 2 ước nguyên dương là 1 và chính A 

\(\Rightarrow n-6=1\)

\(\Rightarrow n=7\)

Thử lại : Thay n vào A ta được :

\(A=\left(7-6\right)\left(3.7+2\right)=23\)(là số nguyên tố)

Vậy n=6 thì A là số nguyên tố .

18 tháng 9 2019

Câu 1: xin sửa đề :D

CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(=\left(n^2+3n+1\right)^2\)là scp

16 tháng 8 2019

a) \(P=n^3-n^2-n-2\)

\(P=n^3-2n^2+n^2-2n+n-2\)

\(P=n^2\left(n-2\right)+n\left(n-2\right)+\left(n-2\right)\)

\(P=\left(n-2\right)\left(n^2+n+1\right)\)

16 tháng 8 2019

Lỡ tay ấn nhầm nút gửi, làm tiếp 

Ta có \(P=\left(n-2\right)\left(n^2+n+1\right)\)

Để P nguyên tố thì P có một thừa số bằng 1

+) TH1: \(n-2=1\Leftrightarrow n=3\)

Khi đó \(P=13\)( thỏa )

+) TH2: \(n^2+n+1=1\Leftrightarrow n\left(n+1\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\\n=-1\end{cases}}\)

Với \(n=0\Leftrightarrow P=-2\)( loại )

Với \(n=-1\Leftrightarrow P=-3\)( loại )

Vậy \(n=3\)thỏa mãn.

23 tháng 8 2020

\(B=\left(n+3\right)^2-\left(n-4\right)^2\)

\(=\left(n+3-n+4\right)\left(n+3+n-4\right)\)

\(=7\left(2n-1\right)\)

Dễ thấy B là số nguyên tố khi

\(2n-1=1\Leftrightarrow n=1\)

Vậy n = 1 thì B là số nguyên tố

4 tháng 7 2016

=(n3-n2)-(n+2)

=n2(n-1)-(n+2)=>n=1

12 tháng 10 2021

đéo