K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b: \(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;0;8;-6\right\}\)

26 tháng 1 2022

a, \(n^2+5=n^2+n-n-1+6=n\left(n+1\right)-\left(n+1\right)+6\)

\(\Rightarrow n+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n + 11-12-23-36-6
n0-21-32-45-7

 

b, tương tự 

 

30 tháng 11 2023

Viết  lời giải ra giúp mình nhé !

 

22 tháng 10 2021

a: Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

5 tháng 2 2022

có vẻ hơi ngắn

 

23 tháng 10 2021

a) \(\left(n+3\right)\left(n^2+1\right)=0\)

\(\Rightarrow n+3=0\Rightarrow n=-3\)(do \(n^2+1\ge1>0\))

b) \(\left(n-1\right)\left(n^2-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}n=1\\n^2=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}n=1\\n=-2\\n=2\end{matrix}\right.\)

23 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}n+3=0\\n^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=-3\left(tm\right)\\n^2=-1\left(ktm\right)\end{matrix}\right.\Leftrightarrow n=-3\\ b,\Leftrightarrow\left[{}\begin{matrix}n-1=0\\n^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=2\\n=-2\end{matrix}\right.\)

14 tháng 1 2018

Câu hỏi của Ngọn Gió Thần Sầu - Toán lớp 6 - Học toán với OnlineMath

14 tháng 1 2018

bạn mk đó

a) Ta có:\(n-6⋮n-1\)

\(\Leftrightarrow n-1-5⋮n-1\)

mà \(n-1⋮n-1\)

nên \(-5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(-5\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

Vậy: \(n\in\left\{2;0;6;-4\right\}\)

b) Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow3n-3+5⋮n-1\)

mà \(3n-3⋮n-1\)

nên \(5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

Vậy: \(n\in\left\{2;0;6;-4\right\}\)

c) Ta có: \(n^2+5⋮n+1\)

\(\Leftrightarrow n^2+2n+1-2n+4⋮n+1\)

\(\Leftrightarrow\left(n+1\right)^2-2n-2+6⋮n+1\)

mà \(\left(n+1\right)^2⋮n+1\)

và \(-2n-2⋮n+1\)

nên \(6⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(6\right)\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

24 tháng 1 2021

Sao cho gì bạn

25 tháng 1 2016

ta thấy:n+1 chia hết cho n+1

=>(n+1)(n+1)chia hết cho n+1

=>n^2+2n+1 chia hết cho n+1

mak n^2+5 chia hết cho n+1

=>(n^2+2n+1)-(n^2+5) chia hết cho n+1

=>2n-4 chia hết cho n+1

=>2n+2-6 chia hết cho n+1

=>6 chia hết cho n+1

=>n+1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}

=>n thuộc{-2;0;-3;1;-4;2;-7;5}

25 tháng 1 2016

bn làm tương tự cái bn mới đăg hồi nãy đó

21 tháng 11 2021

a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.

17 tháng 11 2015

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ