K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Bài làm
Gọi UCLN(5n+14 và n+2)=d
Suy ra :5n+14 chia hết cho d
            :n+2 chia hết cho d
Suy ra:5n+14 chia hết cho d
           :5n+10 chi hết cho d
Suy ra:(5n+14)-(5n+10) chia hết cho d
Suy ra:=5n+14-5n-10 chia hết cho d
Suy ra:=        1         chia hết cho d
Suy ra: d thuộc Ư(1)
Suy ra:   d = 1
Vậy ƯCLN(5n+14 và n+2)=1 nên 5n+14 chia hết cho n+2

28 tháng 8 2020

Bài làm
Gọi UCLN(5n+14 và n+2)=d
Suy ra :5n+14 chia hết cho d
            :n+2 chia hết cho d
Suy ra:5n+14 chia hết cho d
           :5n+10 chi hết cho d
Suy ra:(5n+14)-(5n+10) chia hết cho d
Suy ra:=5n+14-5n-10 chia hết cho d
Suy ra:=        1         chia hết cho d
Suy ra: d thuộc Ư(1)
Suy ra:   d = 1
Vậy ƯCLN(5n+14 và n+2)=1 nên 5n+14 chia hết cho n+2

28 tháng 8 2020

Bài làm
Gọi UCLN(5n+14 và n+2)=d
Suy ra :5n+14 chia hết cho d
            :n+2 chia hết cho d
Suy ra:5n+14 chia hết cho d
           :5n+10 chi hết cho d
Suy ra:(5n+14)-(5n+10) chia hết cho d
Suy ra:=5n+14-5n-10 chia hết cho d
Suy ra:=        1         chia hết cho d
Suy ra: d thuộc Ư(1)
Suy ra:   d = 1
Vậy ƯCLN(5n+14 và n+2)=1 nên 5n+14 chia hết cho n+2

28 tháng 11 2021


     

T=a3a2+2b2+c2+b3b2+2c2+a2+c3c2+2a2+b2T=aa2+c2+2(a2+b2)+bb2+a2+2(b2+c2)+cc2+b2+2(c2+a2)≤a2ac+4ab+b2ab+4bc+c2bc+4ca=12(1c+2b+1a+2c+1b+2c)≤12(1b+b+c+1a+c+c+1c+c+b)≤118(1a+1a+1b+1b+1b+1c+1c+1c+1a)=16(1a+1b+1c)=16(ab+bc+caabc)≤a2+b2+c26abc=3abc6abc=12T=a3a2+2b2+c2+b3b2+2c2+a2+c3c2+2a2+b2T=aa2+c2+2(a2+b2)+bb2+a2+2(b2+c2)+cc2+b2+2(c2+a2)≤a2ac+4ab+b2ab+4bc+c2bc+4ca=12(1c+2b+1a+2c+1b+2c)≤12(1b+b+c+1a+c+c+1c+c+b)≤118(1a+1a+1b+1b+1b+1c+1c+1c+1a)=16(1a+1b+1c)=16(ab+bc+caabc)≤a2+b2+c26abc=3abc6abc=12

Dấu bằng xảy ra khi và chỉ khi {a2+b2+c2=3abca=b=c⇔3a2=3a3⇔a=1⇒a=b=c=1

Giả sử 4n3-5n-1 là SCP

Có 4n3-5n-1=(n+1)(4n2-4n-1)

Gọi (n+1; 4n2-4n-1)=d   ( d thuộc N)

=> n+1 chia hết cho d và 4n2-4n-1 chia hết cho d

 Mà 4n2-4n-1 =(n+1)(4n-8) + 7 

=> 7 chia hết cho d

=> d = 7 hoặc 1

Có n(n+1) +7 không chia hết cho 7 => n(n+1) không chia hết cho 7 => n+1 không chia hết cho 7 => d khác 7

=> d=1

=> (n+1; 4n2-4n-1) =1

mả 4n3-5n-1=(n+1)(4n2-4n-1) là SCP

=> n+1 và 4n2-4n-1 đồng thời là SCP

=> 4n+4 và 4n2-4n-1 là SCP

=> 4n +4 + 4n2-4n-1 = 4n^2 +3 là SCP

mà 4n2+3 chia 4 dư 3 

=> Vô lý

=> Giả sử sai

=> đccm

26 tháng 7

sai r bạn ơi

 

 

 

11 tháng 6 2021

Với n\(\in N\)* có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow\)\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\) (*)

a) Áp dụng (*) vào T

\(\Rightarrow T=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

b) Có \(VT=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)\(=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)

\(\Leftrightarrow\sqrt{n+1}=5\Leftrightarrow n=24\) (tm)

Vậy n=24.