Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $d=ƯCLN(3n-13, n-1)$
$\Rightarrow 3n-13\vdots d; n-1\vdots d$
$\Rightarrow 3(n-1)-(3n-13)\vdots d$
$\Rightarrow 10\vdots d\Rightarrow d=1,2,5,10$
Để phân số trên tối giản thì $d\neq 2,5,10$
Điều này xảy ra khi $n-1\not\vdots 2$ và $n-1\not\vdots 5$
$\Leftrightarrow n\neq 2k+1$ với mọi $k$ là số nguyên bất kỳ và $n\neq 5m+1$ với $m$ là số nguyên bất kỳ.
Ta có:
\(\frac{n+13}{n-2}=\frac{n-2+15}{n-2}=1+\frac{15}{n-2}\) (điều kiện \(n\in N,n\ne2\))
Để p/số \(\frac{n+13}{n-2}\) tối giản thì \(1+\frac{15}{n-2}\) cũng phải tối giản
\(\Rightarrow\frac{15}{n-2}\) tối giản
\(\RightarrowƯC\left(15,n-2\right)=1\)
Mà \(15⋮3,5\)
=> n - 2 không chia hết cho 3 và 5
\(\Rightarrow\begin{cases}n-2\ne3m\left(m\in N\right)\\n-2\ne5n\left(n\in N\right)\end{cases}\)
\(\Rightarrow\begin{cases}n\ne3m+2\\n\ne5n+2\end{cases}\)
Vậy \(\begin{cases}n\ne3m+2\\n\ne5n+2\end{cases}\) thì phân số \(\frac{n+13}{n-2}\) tối giản
Bg
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = \(\frac{n-1}{n-2}\) (n \(\in\)\(ℤ\); n \(\ne2\))
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) \(⋮\)d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 \(⋮\)d
=> d \(\in\)Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n \(\in\)Z và n \(\ne2\)thì M là phân số tối giản.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮d
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
Gọi d là ƯC(n+1 ; n+2)
=> n+1 chia hết cho d và n+2 chia hết cho d
=>(n+2)-(n+1) chia hết d
=> 1 chia hết d
=> D=1
Vậy n+1/n+2 là phân số tối giản
Để n+3/n-2 \(\in\) Z
=> n+3 chia hết n-2
=> n-2 + 5 chia hết n-2
=> 5 chia hết n-2
=> n-2 \(\in\) Ư(5)={-1;1;-5;5}
Ta có:
n-2 | -1 | 1 | -5 | 5 |
n | 1 | 3 | -3 | 7 |
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
a, Để a là phân số thì
\(n+2\ne0\)\(\Leftrightarrow n\ne-2\)
b, Để \(A\in Z\)\(\Rightarrow5⋮n+2\)
Hay \(n+2\inƯ\left(5\right)\)
Ta có các \(Ư\left(5\right)\in\left\{1;-1;5;-5\right\}\)
Vậy có các trường hợp :
n + 2 = 1 => n = -1
n + 2 = -1 => n = -3
n + 2 = 5 => n = 3
n + 2 = -5 => n = -7
Vậy để \(A\in Z\Rightarrow n\in\left\{-1;-3;3;-7\right\}\)
\(\frac{n+13}{n-2}=\frac{n-2+15}{n-2}=\frac{15}{n-2}\)
\(\Rightarrow n-2\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Vì \(n\in Z\)nên x ta tìm thỏa mãn
Ta có :
\(\frac{n+13}{n-2}=\frac{n-2+15}{n-2}=1+\frac{15}{n-2}\)
Để \(\frac{n+13}{n-2}\)tối giản thì \(\frac{15}{n-2}\) tối giản ( thuộc Z )
\(\Rightarrow n-2\in\left\{-15;-5;-1;1;5;15\right\}\)
\(\Rightarrow n\in\left\{-13;-3;1;3;7;17\right\}\) ( thỏa mãn n thuộc Z )