Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.goi 2 so le lien tiep la n va n+1
goi x la UC cua nva n+1
suy ra n chia het cho x va n+1 chia het cho x
n+1-n chia het cho x
1 chia het cho x
vay hai so le lien tiep la 2 so nguyen to cung nhau
b.goi xla UC cua 2.n+5 va 3.n +7
2.n+5 chia het cho x suy ra 3{2n+5} chia het cho x
3n+7 chia het cho x suy ra 2{3n+7} chia het cho x
3{2n+5} - 2{3n+7 chia het cho x
6n+15 - 6n+14 chia het cho x
1 cia het cho x
c.bai c tuong tu bai b
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
gọi d là ước chung nếu có của cả a và b
==> a chia hết cho d nên 8a cũng chia hết cho d
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 )
==> ( b^2 - 8.a ) chia hết cho d
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1 (đpcm)
tớ làm cho cậu câu B thôi đó ủng hộ thì tớ làm tiếp
B)gọi ƯCLN của n+1 và 2n+3 là d
ta có:
n+1\(⋮\)d=> (n+1)*2\(⋮\)d => 2n+2\(⋮\)d => (2n+3)-(2n+2)\(⋮\)d => 1\(⋮\)d
vậy p/s trên là PSTG (điều phải chứng minh )
a) 6n - 12 = 2n + 1.
6n - 2n = 1 + 12
4n = 13
n = \(\frac{13}{4}\)
Vậy \(n=\frac{3}{4}\)
b) 10n + 15 = n + 1.
10n - n = 1 - 15
9n = - 14
n = \(-\frac{14}{9}\)
Vậy n = \(\frac{-14}{9}\)
a,6n-12=2n+1
6n-2n=12+1
4n=13
n=13/4
b,10n+15=n+1
10n-n=1-15
9n=-14
n=-14/9