K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2015

ta có : n / 4 dư 3 => n+1 chia hết cho 4=>n+25 chia hết cho 4

n/17 dư 9=>n+8 chia hết cho 17=> n+25 chia hết cho 17

n/19 dư 13 => n +6 chai hết cho 19=>n+25 chia hết cho 19

=>n+25 chia hết cho 4;17;19

=>n+25 thuộc BC(4;17;19) mà n nhỏ nhất 

=>a+25 thuộc BCNN(4;17;19)=1292

=>n=1267

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Bài 1:

Gọi số tự nhiên thỏa mãn những tính chất của đề bài là $n$

Vì $n$ chia $17$ dư $4$ , chia $19$ dư $11$ nên:

\(n=17k+4=19t+11(k,t\in\mathbb{N})\)

\(\Rightarrow 19t+7=17k\vdots 17\)

\(\Leftrightarrow 17t+2t+7\vdots 17\)

\(\Leftrightarrow 2t+7\vdots 17\)

Do đó \(2t+7=17m\) với $m$ là một số tự nhiên nào đó.

\(\Leftrightarrow 2t=17m-7\)

Vì $2t$ chẵn nên $17m-7$ cũng chẵn. Do đó $m$ lẻ

\(\Rightarrow m\geq 1\Rightarrow 2t=17m-7\geq 10\)

\(\Leftrightarrow t\geq 5\)

Suy ra \(n=19t+11\geq 19.5+11=106\)

Thử lại thấy đúng

Vậy số $n$ nhỏ nhất thỏa mãn đkđb là $106$

Bài 3:

-Nếu $p$ chẵn thì $p+10$ chẵn. Mà $p+10>2$ nên $p+10$ không thể là số nguyên tố.

-Nếu $p$ lẻ thì $p+3$ chẵn. Mà $p+3>2$ nên $p+3$ không thể là số nguyên tố.

Vậy không tồn tại số nguyên tố $p$ nào thỏa mãn $p+3$ và $p+10$ đồng thời là số nguyên tố.

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Bài 2:

Số tự nhiên chia 11 dư 12 nghĩa là chia 11 dư 1 nhé bạn.

Gọi số tự nhiên thỏa mãn đề bài là $n$

Theo bài ra ta có: \(n=7k+5=11t+1\)

\(\Rightarrow 11t-4=7k\vdots 7\)

\(\Leftrightarrow 11t-4-7\vdots 7\)

\(\Leftrightarrow 11(t-1)\vdots 7\Leftrightarrow t-1\vdots 7\) (do 7 và 11 nguyên tố cùng nhau)

Do đó \(t-1=7m\Leftrightarrow t=7m+1\)

\(\Rightarrow n=11t+1=11(7m+1)+1=77m+12\)

Vậy số n chia cho 77 dư 12

Bài 4:

\(S=2^n+3^n+4^n+5^n+6^n\)

Với \(n\in\mathbb{N}^* \Rightarrow \left\{\begin{matrix} 2^n \text{ chẵn}\\ 3^n\text{ lẻ}\\ 4^n \text{chẵn}\\ 5^n \text{lẻ}\\ 6^n\text{chẵn}\end{matrix}\right.\)

\(\Rightarrow S=2^n+3^n+4^n+5^n+6^n\) là một số chẵn

Do đó \(S\vdots 2\)

24 tháng 9 2015

mà giờ là chiều rui còn đâu

17 tháng 5 2017

Theo bài ra ta có:

A=4a+3

=17b+9              (a,b,c \(\in N\))

=19c+13

Mặt khác: A+25 = 4a+3+25=4a+28=4(a+7)

=17b+9+25=17b+34=17(b+2)

=19c+13+25=19c+38=19(c+2)

Như vậy A+25 chia hết cho 4;17;19 (vì có chứa thừa số 4;17 và 19). Mà (4;17;19) = 1 \(\Rightarrow\)A+25 chia hết cho 1292

\(\Rightarrow\)A+25=1292k (\(k\in\)N*)

\(\Rightarrow\)A=1292k - 25 = 1292k - 1292 + 1267 = 1292(k-1)+1267

Do1267<1292 nên 1267 là số dư trong phép chia a cho 1292


 

17 tháng 5 2017

Goi số đã cho là A ta có

A=4a+3

  =  17b+9

  =19c+13

măt khác A+25=4a+3+25=4a+28=4.(a+7)

                      =17b+9+25=17b+34=17(b+2)

                     =19c+13+25=19c+28=19.(c+2)

..................................................................................

         K mk đi mk giải tiếp cho