K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Bài 1:

Gọi số tự nhiên thỏa mãn những tính chất của đề bài là $n$

Vì $n$ chia $17$ dư $4$ , chia $19$ dư $11$ nên:

\(n=17k+4=19t+11(k,t\in\mathbb{N})\)

\(\Rightarrow 19t+7=17k\vdots 17\)

\(\Leftrightarrow 17t+2t+7\vdots 17\)

\(\Leftrightarrow 2t+7\vdots 17\)

Do đó \(2t+7=17m\) với $m$ là một số tự nhiên nào đó.

\(\Leftrightarrow 2t=17m-7\)

Vì $2t$ chẵn nên $17m-7$ cũng chẵn. Do đó $m$ lẻ

\(\Rightarrow m\geq 1\Rightarrow 2t=17m-7\geq 10\)

\(\Leftrightarrow t\geq 5\)

Suy ra \(n=19t+11\geq 19.5+11=106\)

Thử lại thấy đúng

Vậy số $n$ nhỏ nhất thỏa mãn đkđb là $106$

Bài 3:

-Nếu $p$ chẵn thì $p+10$ chẵn. Mà $p+10>2$ nên $p+10$ không thể là số nguyên tố.

-Nếu $p$ lẻ thì $p+3$ chẵn. Mà $p+3>2$ nên $p+3$ không thể là số nguyên tố.

Vậy không tồn tại số nguyên tố $p$ nào thỏa mãn $p+3$ và $p+10$ đồng thời là số nguyên tố.

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Bài 2:

Số tự nhiên chia 11 dư 12 nghĩa là chia 11 dư 1 nhé bạn.

Gọi số tự nhiên thỏa mãn đề bài là $n$

Theo bài ra ta có: \(n=7k+5=11t+1\)

\(\Rightarrow 11t-4=7k\vdots 7\)

\(\Leftrightarrow 11t-4-7\vdots 7\)

\(\Leftrightarrow 11(t-1)\vdots 7\Leftrightarrow t-1\vdots 7\) (do 7 và 11 nguyên tố cùng nhau)

Do đó \(t-1=7m\Leftrightarrow t=7m+1\)

\(\Rightarrow n=11t+1=11(7m+1)+1=77m+12\)

Vậy số n chia cho 77 dư 12

Bài 4:

\(S=2^n+3^n+4^n+5^n+6^n\)

Với \(n\in\mathbb{N}^* \Rightarrow \left\{\begin{matrix} 2^n \text{ chẵn}\\ 3^n\text{ lẻ}\\ 4^n \text{chẵn}\\ 5^n \text{lẻ}\\ 6^n\text{chẵn}\end{matrix}\right.\)

\(\Rightarrow S=2^n+3^n+4^n+5^n+6^n\) là một số chẵn

Do đó \(S\vdots 2\)

30 tháng 1 2016

lì xì tết thì phải vừa nhiều vừa khó chứ

duyệt đi

30 tháng 1 2016

Bạn ơi, bạn hỏi từng câu thôi tớ mói trả lời đc chứ

31 tháng 10 2016

a)P=1

b)P=3

B2:960

B3:418

31 tháng 10 2016

B2:960

16 tháng 3 2017

Đặt A=102+18n-1

=10n-1+18n

=9999...9(n c/số 9)+18n

=9.11111...1(n c/số 1)+9.2n

=9(1111...1(n c/số 1+2n)

mà 111...1(n c/số 1)=n+9q

=>A=9.(9q+n+2n)

=>A=9(9q+3n)

=9.3.(3q+n)

=27(3q+n)

=>\(A⋮27\)

vậy...(đccm)

mấy bài sau dễ òi

bn tự làm nhé

16 tháng 3 2017

Nếu dễ thì bạn làm nốt đi. Mà bạn học lớp nào và ở đâu?

24 tháng 9 2015

mà giờ là chiều rui còn đâu

18 tháng 12 2018

xem trên mạng nhé 

18 tháng 12 2018

mình k thấy bạn ak !

25 tháng 12 2022

A) a chia 2 dư 1 nên a+1 chia hết cho 2 hay a+11 cũng chia hết cho 2

 

a chia 3 dư 1 nên a+2 chia hết cho 3 hay a+2+9=a+11 cũng chia hết cho 3

 

a chia 5 dư 4 nên a+1 chia hết cho 5, hay a+1+10=a+11 cũng chia hết cho 5

 

a chia 7 dư 3 nên a+4 chia hết cho 7 hay a+4+7=a+11 chia hết cho 7

 

Suy ra a+11 cùng chia hết cho 2; 3; 5; 7

 

a là số nhỏ nhất nên a+11 cũng là số nhỏ nhất

 

Do đó, a+11=BCNN (2;3;5;7)

 

Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau

 

Do vậy, a+11=2.3.5.7=210

 

Vậy a=199

B)Gọi UCLN của 7n+10 và 5n+7 là d

7n+10 chia hết cho d => 5(7n+10) chia hết cho d

                                 hay 35n+50 chia hết cho d

5n+7 chia hết cho d=> 7(5n+7) chia hết cho d

                                 hay 35n+49 chia hết cho d

(35n+50)-(35n+49) chia hết cho d

35n+50-35n-49 chia hết cho d 

(35n-35n)+(50-49) chia hết cho d

0+1 chia hết cho d

1 chia hết cho d => d=1

Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

 

25 tháng 12 2022

Vì a chia cho 2 dư 1 nên a là số lẻ.

Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6.

Do đó a phải có tận cùng là 1.

- Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài).

- Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9).

Vì 171 : 7 = 24 dư 3 nên a = 171.

Vậy số phải tìm nhỏ nhất thỏa mãn điều kiện của đề bài là 171.