K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì số chính phương khi chia cho 4 chỉ có thể chia hết hoặc dư 1 mà 2014 chia 4 dư 2

suy ra n2+2014 chia 4 dư 2 hoặc dư 3.

Vậy n2+2014 không là số chính phương.

17 tháng 6 2019

Giả sử tồn tại  m \(\in\)N để m2 + 2014 là số chính phương

=> m2 + 2014 = n2    ( n \(\in\)N*)

     n2 - m2       = 2014

Xét : (n - m )( m+n) = (n-m)n + (n-m)m = n2 - m.n + m.n - m2 = n2 - m2 

( n-m)( n + m) = 2014 (1)

Thấy ( n-m )+( n + m) = 2n là số chẵn

Vậy n -m và n +m là hai số cùng chẵn hoặc cùng lẻ

       (n -m)(n+m) = 2014 là 1 số chẵn

=> n - m và n + m không thể là hai số lẻ

=> n - m và n + m không thể là hai số chẵn.

=> n - m = 2p và m +n = 2q ( p;q \(\in\)N)

=> (n-m)(n +m) = 2p . 2q = 4pq

=> (n-m)(n+m) \(⋮\)4 (2)

Mà 2014 \(⋮̸\)4 (3)

Từ (1),(2),(3) => Giả sử này sai => không có m t/m

15 tháng 7 2019

\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)

15 tháng 7 2019

A = 1 + 3 + 5 + 7 + ... + 2n + 1

   = \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)

   = \(\left(n+1\right).\left(n+1\right)\)

   = \(\left(n+1\right)^2\)

=> A là số chính phương (đpcm)

b) \(2+4+6+...+2n\)

\(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)

\(n.\left(n+1\right)\)

\(n^2+n\)

\(\Rightarrow\)B không là số chính phương

17 tháng 12 2017

a,n=1 thì tm

n=2 thì ko tm

n=3 thì tm

n=4 thì ko tm

n >= 5 thì n! chia hết cho 2 và 5 => n! có tận cùng là 0

Mà 1!+2!+3!+4! = 33

=> 1!+2!+3!+4!+.....+n! có tận cùng là 3 nên ko chính phương

Vậy n thuộc {1;3}

k mk nha