K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

a, \(\frac{3n+5}{n+1}=\frac{3\left(n+1\right)+2}{n+1}=\frac{2}{n+1}\)

\(\Rightarrow n+1\in2=\left\{\pm1;\pm2\right\}\)

n + 11-12-2
n0-21-3

b, \(\frac{n+13}{n+1}=\frac{n+1+12}{n+1}=\frac{12}{n+1}\)

\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

n + 11-12-23-34-46-612-12
n0-21-32-43-55-711-13

c, \(\frac{3n+15}{n+1}=\frac{3\left(n+1\right)+12}{n+1}=\frac{12}{n+1}\)

\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

n + 11-12-23-34-46-612-12
n0-21-32-43-55-711-13
16 tháng 4 2016

Để A\(\in\)\(\Leftrightarrow2n+5\)chia hết cho 3n+1

                \(\Leftrightarrow\)6n+15chia hết cho 3n+1

              \(\Leftrightarrow\)2(3n+1)+13chia hết cho 3n+1

              \(\Leftrightarrow\)13 chia hết cho 3n+1 

                \(\Leftrightarrow\)3n+1 \(\inƯ\left(13\right)\)

Sau đó bạn tìm ra n vs 3n+1 lần lượt =1;13

Hãy Nhớ Tính xoq thì nhớ thử lại nhé

chúc bn hk giỏi

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay