K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2022

1: =>3n-12+17 chia hết cho n-4

=>\(n-4\in\left\{1;-1;17;-17\right\}\)

hay \(n\in\left\{5;3;21;-13\right\}\)

2: =>6n-2+9 chia hết cho 3n-1

=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)

4: =>2n+4-11 chia hết cho n+2

=>\(n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-1;-3;9;-13\right\}\)

5: =>3n-4 chia hết cho n-3

=>3n-9+5 chia hết cho n-3

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

6: =>2n+2-7 chia hết cho n+1

=>\(n+1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{0;-2;6;-8\right\}\)

5 tháng 5 2020

a) Ta có 2n+8=2(n-3)+13

=> 13 chia hết cho n-3

=> n-3\(\in\)Ư(13)={-13;-1;1;13}

ta có bảng

n-3-13-113
n-10246
5 tháng 5 2020

b) Ta có 3n+11=3(n+5)-4

=> 4 chia hết cho n+5

=> n+5\(\in\)Ư(4)={-4;-2;-1;1;2;4}

ta có bảng

n+5-4-2-1124
n-9-7-6-4-3-1

a: \(\Leftrightarrow4n-3⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;1\right\}\)

b: \(\Leftrightarrow6n+10⋮2n-3\)

\(\Leftrightarrow2n-3\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{2;1;11;-8\right\}\)

28 tháng 6 2019

Đặt \(A=11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)

\(A=11\cdot25^n+8^n\cdot4+8^n\cdot2\)

\(A=17\cdot25^2-6\left(25^n-8^n\right)\)

\(A=17\cdot25^n-6\left(25-8\right)\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(A=17\cdot25^n-17\cdot6\cdot\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(\Rightarrow A⋮17\)

2: \(\Leftrightarrow15n-5⋮5n+2\)

\(\Leftrightarrow15n+6-11⋮5n+2\)

\(\Leftrightarrow5n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-\dfrac{1}{5};-\dfrac{3}{5};\dfrac{9}{5};-\dfrac{13}{5}\right\}\)

3: \(\Leftrightarrow n+5\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{-4;-6;2;-12\right\}\)

5 tháng 6 2016

a) Đặt Sn = n3 + 3n2 + 5n

Với n = 1 thì S1 = 9 chia hết cho 3

Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k)  3

Ta phải chứng minh rằng Sk+1  3

Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1) 

                        = k3  + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5 

                         = k3 + 3k2 + 5k + 3k2 + 9k + 9

 hay Sk+1 = Sk + 3(k2 + 3k + 3)

Theo giả thiết quy nạp thì Sk   3, mặt khác 3(k2 + 3k + 3)  3 nên Sk+1  3.

Vậy (n3 + 3n2 + 5n)  3 với mọi n ε N*  .


 

5 tháng 6 2016

b) Đặt Sn = 4n + 15n - 1 

Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1   9

Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.

Ta phải chứng minh Sk+1  9.

Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1

                                    = 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)    

Theo giả thiết quy nạp thì  Sk   9  nên 4S1   9, mặt khác 9(5k - 2)   9, nên Sk+1  9

Vậy (4n + 15n - 1)  9 với mọi n ε N*  



 

16 tháng 11 2016

\(n.n+3n+6\)

\(=n^2+3n+6\)

Đặt cột dộc ta có :

n2 + 3n + 6 | n + 3

n2 + 3n | n

_________|

0 + 0 + 6

Để phép chia trên là phép chia hết thì :

\(6⋮n+3\Rightarrow n\inƯ\left(6\right)=\left\{1;-1;6;-6\right\}\)

+ ) n + 3 = 1

n = -2

+ ) n + 3 = -1

n = -4

+ ) n + 3 = 6

n = 3

+) n + 3 = -6

n = -9

Vậy \(n\in\left\{-9;3;-4;-2\right\}\)

25 tháng 7 2017

Đề bài là gì vậy,Tìm n hay chứng minh?

25 tháng 7 2017

Chứng minh bạn