Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 2n+8=2(n-3)+13
=> 13 chia hết cho n-3
=> n-3\(\in\)Ư(13)={-13;-1;1;13}
ta có bảng
n-3 | -13 | -1 | 1 | 3 |
n | -10 | 2 | 4 | 6 |
b) Ta có 3n+11=3(n+5)-4
=> 4 chia hết cho n+5
=> n+5\(\in\)Ư(4)={-4;-2;-1;1;2;4}
ta có bảng
n+5 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -9 | -7 | -6 | -4 | -3 | -1 |
a: \(\Leftrightarrow4n-3⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;1\right\}\)
b: \(\Leftrightarrow6n+10⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{2;1;11;-8\right\}\)
Đặt \(A=11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
\(A=11\cdot25^n+8^n\cdot4+8^n\cdot2\)
\(A=17\cdot25^2-6\left(25^n-8^n\right)\)
\(A=17\cdot25^n-6\left(25-8\right)\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(A=17\cdot25^n-17\cdot6\cdot\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(\Rightarrow A⋮17\)
2: \(\Leftrightarrow15n-5⋮5n+2\)
\(\Leftrightarrow15n+6-11⋮5n+2\)
\(\Leftrightarrow5n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-\dfrac{1}{5};-\dfrac{3}{5};\dfrac{9}{5};-\dfrac{13}{5}\right\}\)
3: \(\Leftrightarrow n+5\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-4;-6;2;-12\right\}\)
a) Đặt Sn = n3 + 3n2 + 5n
Với n = 1 thì S1 = 9 chia hết cho 3
Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k) 3
Ta phải chứng minh rằng Sk+1 3
Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= k3 + 3k2 + 5k + 3k2 + 9k + 9
hay Sk+1 = Sk + 3(k2 + 3k + 3)
Theo giả thiết quy nạp thì Sk 3, mặt khác 3(k2 + 3k + 3) 3 nên Sk+1 3.
Vậy (n3 + 3n2 + 5n) 3 với mọi n ε N* .
b) Đặt Sn = 4n + 15n - 1
Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1 9
Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.
Ta phải chứng minh Sk+1 9.
Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1
= 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)
Theo giả thiết quy nạp thì Sk 9 nên 4S1 9, mặt khác 9(5k - 2) 9, nên Sk+1 9
Vậy (4n + 15n - 1) 9 với mọi n ε N*
\(n.n+3n+6\)
\(=n^2+3n+6\)
Đặt cột dộc ta có :
n2 + 3n + 6 | n + 3
n2 + 3n | n
_________|
0 + 0 + 6
Để phép chia trên là phép chia hết thì :
\(6⋮n+3\Rightarrow n\inƯ\left(6\right)=\left\{1;-1;6;-6\right\}\)
+ ) n + 3 = 1
n = -2
+ ) n + 3 = -1
n = -4
+ ) n + 3 = 6
n = 3
+) n + 3 = -6
n = -9
Vậy \(n\in\left\{-9;3;-4;-2\right\}\)
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)