Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 3n+7 là bội của n+1
=> 3n-7 chia het cho n+1
=>3n-7-3(n+1)chia het cho n+1
=>-10 chia het cho n+1
n+1 thuốc Ư(-10)
=>n=0,9,1,4,-2,-3,-6,-9
Để 3n+7 là bội của n+1
3n+3+4 là bội của n+1
=> 3(n+1)+4 là bội của n+1
3(4+1) là bội của n+1
=> 4 là bội của n+1 => n+1 là ước số của 4 => n=(3,-5,1,-3,0,2)
vì n là số nguyên tố nên n=1,3
Nếu tôi ngu thì cậu thử làm đi?Cả cách làm cụ thể nhé!
a. để A là số nguyên thì 3 chia hết cho n-1 suy ra n-1 thuộc ước của 3
Ư(3)= (+_ 1: +_3)
lập bảng ta tính được x=( 0;2;4)
a)Để A là số nguyên thì 3 chia hết cho n-1
Hay \(\left(n-1\right)\inƯ\left(3\right)\)
Vậy Ư (3) là:[1,-1,3,-3]
Do đó ta có bảng sau:
n-1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Vì n là số tự nhiên nên Để A là số nguyên thì n=0;2;4
b)
Để A là số nguyên tố thì 3 chia hết cho n-1
Hay \(\left(n-1\right)\inƯ\left(3\right)\)
Vậy Ư (3) là:[1,-1,3,-3]
Do đó ta có bảng sau:
n-1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Vì n là số tự nhiên nên Để A là số nguyên tố thì n=2 là TM
a) n+2 chia hết cho n-1
n+2=n-1+3 chia hết cho n-1
=> 3 chia hết cho n-1 hay n-1\(\in\)Ư(3)={-1;1;-3;3}
n\(\in\){0;2;-2;4}
b) 2n-3 là bội của n+4 nghĩa là 2n-3 chia hết cho n+4
2n-3=2(n+4)-11 chia hết cho n+4
=> 11 chia hết cho n+4 hay n+4\(\in\)Ư(11)={-1;1;-11;11}
n\(\in\){-5;-3;-15;7}
c) n-7 chia hết cho 2n+3
n-7=2(n-7) chia hết cho 2n+3
2(n-7)=2n+3-17 chia hết cho 2n+3
=> 17 chia hết cho 2n+3 hay 2n+3\(\in\)Ư(17)={-1;1;-17;17}
n\(\in\){-2;-1;-10;7}
d) n+5 chia hết cho n-2
n+5=n-2+7 chia hết cho n-2
=> 7 chia hết cho n-2 hay n-2\(\in\)Ư(7)={-1;1;-7;7}
n\(\in\){1;3;-5;9}
e) n2 -2 là bội của n+3
n2-2=n(n+3)-3n-2=n(n+3)-3(n+3)+7 chia hết cho n-2
n(n+3) và 3(n+3) cùng chia hết cho n+3
=> 7 chia hết cho n+3 hay n+3\(\in\)Ư(7)={-1;1;-7;7}
n\(\in\){-4;-2;-10;4}
f) 3n-13 là ước của n-2 nghĩa là n-2 chia hết cho 3n-13
n-2 chia hết cho 3n-13 => 3(n-2) chia hết cho 3n-13
3(n-2)=3n-13+7 chia hết cho 3n-13
=> 7 chia hết cho 3n-13 hay 3n-13\(\in\)Ư(7)={-1;1-7;7}
n\(\in\){4;2;}
g) In+19I + In+5I + In+2011I = 4n
n+19+n+5+n+2011=-4n
TH1: 3n+2035=-4n => n=(-2035) :7 (loại)
TH2: n+19+n+5+n+2011=4n
3n+2035=4n => n=2035
Theo bài ra ta có : \(\frac{3n+7}{n+1}=\frac{3n+3}{n+1}+\frac{4}{n+1}=3+\frac{4}{n+1}\)
3n+7 thuộc B(n+1)<=>\(\frac{3n+7}{n+1}\)là số tự nhiên<=>\(\frac{4}{n+1}\)là số tự nhiên<=>n+1 thuộc Ư(4)={-4;-2;-1;1;2;4}
Tiếp thì bn tự thay n+1 vào là ra
3n +7 là bội của n+1
suy ra 3n+7 chia hết cho n+1
suy ra 3(n+1)+4 chia hết cho n+1
suy ra 4 chia hết cho n+1
suy ra n+1 thuộc Ư(10)=(1,2,4)
suy ra n thuộc (0,1,3)
(3n+7) là bội của (n+1)
=> (3n+7) chia hết cho (n+1)
=> [3(n+1)+4] chia hết cho (n+1)
=> 4 chia hết cho (n+1) ( Vì : 3(n+1) luôn chia hết cho n+1 )
=> n+1 thuộc Ư(4)={1;-1;2;-2;4;-4}
=> n thuộc {0;-2;1;-3;3;-5}
Mà n là SNT . Vậy n =3