K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2023

Ta có:
\(\dfrac{2n-1}{2n+3}=\dfrac{2n+3-4}{2n+3}\)\(=1-\dfrac{4}{2n+3}\)
Để \(\dfrac{2n-1}{2n+3}\) là số nguyên thì \(2n+3\inƯ\left(4\right)\)
Ta có bảng:

\(2n+3\)\(-4\)\(-2\)\(-1\)\(1\)\(2\)\(4\)
\(2n\)\(-7\)\(-5\)\(-4\)\(-2\)\(-1\)\(1\)
\(n\)\(-\dfrac{7}{2}\left(loại\right)\)\(-\dfrac{5}{2}\left(loại\right)\)\(-2\)\(-1\)\(-\dfrac{1}{2}\left(loại\right)\)\(\dfrac{1}{2}\left(loại\right)\)


Vậy \(n\in\left\{-2;-1\right\}\)

 

Để A nguyên thì 2n-1 chia hết cho 2n+3

=>2n+3-4 chia hết cho 2n+3

=>\(2n+3\in\left\{1;-1;2;-2;4;-4\right\}\)

mà n nguyên

nên \(n\in\left\{-1;-2\right\}\)

16 tháng 3 2018

Vì 2n+1/n-2 là một số nguyên=>2n+1chia hết cho n-2 

=>2n+1-n-2chia hết cho n-2

=>N-1 chia hết cho n-2

=>-1 chia het cho n-2

=>n-2=-1

=>n=-1+2=1

16 tháng 3 2018

-Để: \(\frac{2n+1}{n-2}\inℤ\)

\(\Rightarrow2n+1⋮n-2\\ \Leftrightarrow2\left(n-2\right)+5⋮n-2\)

-Mà: \(n-2⋮n-2\Rightarrow5⋮n-2\Leftrightarrow n-2\inƯ\left(5\right)\)

\(\Leftrightarrow.....\)

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

13 tháng 7 2018

a) Đặt \(A=\frac{n-5}{n-3}=\frac{n-3-2}{n-3}=\frac{n-3}{n-3}-\frac{2}{n-3}=1-\frac{2}{n-3}\)

Để A là số nguyên

=> 2/n-3 là số nguyên

=> 2 chia hết cho n - 3

=> n - 3 thuộc Ư(2)={1;-1;2;-2}

...

rùi bn tự thay giá trị của n -3 vào để tìm n nhé!

b) Đặt \(B=\frac{2n+1}{n+1}=\frac{2n+2-1}{n+1}=\frac{2.\left(n+1\right)-1}{n+1}=2-\frac{1}{n+1}\)

Để B là số nguyên

=> 1/n+1 là số nguyên

=> 1 chia hết cho n + 1

=> n + 1 thuộc Ư(1) = { 1;-1}

...

27 tháng 2 2016

Để (n-1).(n2+2n+3) la số nhuyen to 

\(\Rightarrow\)n-1=1 hoac n2+2n+3=1

Voi n-1=1\(\Rightarrow\)n=2, ta co:

                  n2+2n+3=2.2+2.2+3=11  

Voi n2+2n+3=1\(\Rightarrow\)n=\(\phi\)

Vay n=2

27 tháng 2 2016

Số ngtố có 2 ước là 1 và chính nó

<=> hoặc n - 1 = 1 hoặc n2 + 2n + 3 =1 

Đến đây là giải dc rùi!

24 tháng 11 2017

mk nghĩ là 3

b: Để A nguyên thì 2n+3 chia hết cho n

=>3 chia hết cho n

=>n thuộc {1;-1;3;-3}

c: Th1: n=2

=>n+3=5(nhận)

TH2: n=2k+1

=>n+3=2k+4=2(k+2)

=>Loại

d: Gọi d=ƯCLN(2n+3;2n+5)

=>2n+5-2n-3 chia hết cho d

=>2 chia hết cho d

mà 2n+3 lẻ

nên d=1

=>PSTG

16 tháng 3 2021

\(\frac{6n+7}{2n+3}=\frac{6n+9-2}{2n+3}=\frac{3\left(2n+3\right)-2}{2n+3}=3-\frac{2}{2n+3}\)

Đê phân số số trên là số nguyên thì 2n+3 phải là ước của 2

\(\Rightarrow2n+3=\left\{-2;-1;1;2\right\}\Rightarrow n=\left\{-\frac{5}{2};-2;-1;-\frac{1}{2}\right\}\)

Do n nguyên nên n={-2;-1}

20 tháng 6 2019

#)Giải :

\(A=\frac{2n+1}{2n-4}=\frac{2n-4+5}{2n-4}=\frac{2n-4}{2n-4}+\frac{5}{2n-4}=1+\frac{5}{2n-4}\)

Để A là phân số tối giản => 5 không chia hết cho 2n - 4 

Lập bảng ra xét rồi chọn những số thỏa mãn

\(\text{Ta có :}\)

\(\frac{2n+1}{2n-4}=\frac{2n-4+5}{2n-4}\)

                 \(=1+\frac{5}{2n-4}\)

\(\text{Để biểu thức không là phân số thì 5 không chia hết cho 2n - 4.}\)

\(=>\text{2n - 4 không thuộc Ư(5)}\)

\(=>\text{2n - 4 không bằng }-1,-5,1,5\)

\(=>\text{n không bằng }\frac{3}{2},\frac{-1}{2},\frac{5}{2},\frac{9}{2}.\)

\(\text{Vậy ...}\)