K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK : n \(\ge\)0, n \(\ne\)0

Ta có 2n - 1 \(\ge\)0

\(\Leftrightarrow2n\ge1\)

\(\Leftrightarrow n\ge\frac{1}{2}\)

Lại có \(9n+4\ge0\)

\(\Leftrightarrow9n\ge-4\)

\(\Leftrightarrow n\ge-\frac{4}{9}\)( loại )

Vậy n \(\ge\frac{1}{2}\)

9 tháng 8 2019

T nghĩ

Trong câu hỏi tương tự có í

Xem thử ik !

17 tháng 3 2019

Đặt d là ước nguyên tố của 2n - 1 và 9n + 4

=> 2n - 1 chia hết cho d ; 9n + 4 chia hết cho d

2n - 1 chia hết cho d => 9( 2n - 1 ) chia hết cho d => 18n - 9 chia hết cho d

9n + 4 chia hết cho d => 2( 9n + 4 ) chia hết cho d => 18n + 8 chia hết cho d

=>( 18n + 8 ) - ( 18n - 9 ) chia hết cho d

=>18n + 8 - 18n + 9 chia hết cho d

=>   17 chia hết cho d => d thuộc ước của 17 mà ước của 17 là 1;17

18 tháng 8 2017

Để  \(\frac{6n+8}{2n-1}\)tối giản thì \(\frac{11}{2n-1}\)tối giản \(\Leftrightarrow\)ƯC(11,2n-1)=1,-1

\(\Rightarrow\)2n-1 không chia hết 5\(\Rightarrow\)2n-1\(\ne\)11k(k\(\in\)Z, k\(\ne\)0)

\(\Rightarrow\)n\(\ne\)11k+1:2

19 tháng 8 2023

a) Để \(\dfrac{3n+4}{n-1}\) tối giản thì n không phải là giá trị sao cho \(\left(3n+4\right)⋮\left(n-1\right)\)

\(\left(3n+4\right)⋮\left(n-1\right)\Leftrightarrow\left(3n+4\right)-3\left(n-1\right)⋮\left(n-1\right)\)

\(\Leftrightarrow7⋮\left(n-1\right)\Rightarrow\left(n-1\right)\inƯ\left(7\right)\) (đoạn này tự lập bảng và kết luận)

b) Tương tự như câu a)

9 tháng 9 2020

Giúp mình với

18 tháng 7 2019

1,

x-2/ 15=27/15

=>x-2=27

x=29

18 tháng 7 2019

#)Giải :

1.

\(\frac{x-2}{15}=\frac{9}{5}\Leftrightarrow x-2=\frac{9}{5}.15=27\Leftrightarrow x=29\)

\(\frac{2-x}{16}=\frac{-4}{x-2}\Leftrightarrow2-2x-2=\left(-4\right).16=-64\Leftrightarrow x\left(2-2\right)=-64\Leftrightarrow x.0=64\)

P/s : Câu thứ hai cứ sao sao ý 

30 tháng 3 2017

bài này mk học rồi

27 tháng 2 2018

Gỉa sử\(\hept{\begin{cases}7n+4⋮d\left(d\inℤ\right)\\9n+5⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}63n+36⋮d\\63n+35⋮d\end{cases}}\)

\(\Leftrightarrow\left(63n+36\right)-\left(63n+35\right)⋮d\)

\(\Leftrightarrow63n-63n+36-35⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\in\left\{-1;1\right\}\)

\(\Leftrightarrow\hept{\begin{cases}7n+4\\9n+5\end{cases}}\)tối giản\(\Leftrightarrow\)đcpm

Chúc bạn học giỏi!

Đừng quên nha! ^-^