Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{3n+2}{4n-5}\)là số tự nhiên với n thuộc Z
\(\Rightarrow3n+2⋮4n-5\left(n\inℤ\right)\)
\(\Rightarrow4\left(3n+2\right)⋮4n-5\)
\(\Rightarrow12n+8⋮4n-5\)
\(\Rightarrow12n-15+23⋮4n-5\)
\(\Rightarrow23⋮4n-5\)
4n-5 | -23 | -1 | 1 | 23 |
n | \(/\) | 1 | \(/\) | 7 |
Vậy với \(n\in\left\{1;7\right\}\)thì \(\frac{3n+2}{4n-5}\)là số tự nhiên
Rút gọn ta được \(A=\frac{9n-9}{n-3}=\frac{9n-27+18}{n-3}=\frac{9\left(n-3\right)}{n-3}+\frac{18}{n-3}=9+\frac{18}{n-3}\)
Để A là số tự nhiên thì \(9+\frac{18}{n-3}\)cũng là số tự nhiên
Suy ra \(\frac{18}{n-3}\)là số tự nhiên , nên 18 chia hết cho n-3
n-3=1; n-3=2; n-3=3; n-3=6; n-3=9; n-3=18
Vậy n=4; n=5; n=6; n=9; n=12; n=21
a)Ta có:\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)
=> Để \(1+\frac{5}{n-2}\) là số nguyên âm
=>\(\frac{5}{n-2}\) là số âm và \(\frac{5}{n-2}>-1\)
\(\Rightarrow n-2=-5\)
\(\Rightarrow n=-5-2\)
\(\Rightarrow n=-3\)