Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40
+Ta có: 2n+1 và 3n+1 là số chính phương.
+Áp dụng bài 7, suy ra n chia hết cho 40. Mà n là số có 2 chữ số.
=> n=40 hoặc n=80.
+Trường hợp n=80 thì loại do 2.80+1 không phải là số chính phương.
Vậy n=40 thoả mãn đề bài
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
n là số có 2 chữ số => 9 < n < 100 => 19 < 2n + 1 < 201 mà 2n + 1 là số chính phương, lẻ nên 2n + 1 có thể bằng: 25; 49; 81; 121;169;
2n + 1 = 25 => n = 12 => 3n + 1= 37 ko là số cp => loại
2n + 1= 49 => n = 24 => 3n + 1 = 73 => loại
2n+ 1= 81 => n = 40 => 3n + 1= 121 thoả mãn. làm tương tự
......
KL: n = ....
Vì \(n\)là số tự nhiên có 2 chữ số
\(\Rightarrow\)\(10\le n\le99\)\(\Rightarrow\)\(21\le2n+1\le199\)
Vì \(2n+1\)là số chính phương lẻ
\(\Rightarrow\)\(2n+1\in\left\{25;49;81;121;169\right\}\)
\(\Rightarrow\)\(2n\in\left\{24;48;80;120;168\right\}\)
\(\Rightarrow\)\(n\in\left\{12;24;40;60;84\right\}\)
Thay lần lượt các giá trị của \(n\)vào \(3n+1,\)ta có:
+ Với \(n=12\)\(\Rightarrow\)\(3n+1=3\times12+1=37\left(L\right)\)
+ Với \(n=24\)\(\Rightarrow\)\(3n+1=3\times24+1=73\left(L\right)\)
+ Với \(n=40\)\(\Rightarrow\)\(3n+1=3\times40+1=121\left(TM\right)\)
+ Với \(n=60\)\(\Rightarrow\)\(3n+1=3\times60+1=181\left(L\right)\)
+ Với \(n=84\)\(\Rightarrow\)\(3n+1=3\times84+1=253\left(L\right)\)
Vậy \(n=40\)
Chúc bn hok tốt ^_^