K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

ta có: \(2P=2x^2-2x\sqrt{y}+2x+2y-2\sqrt{y}+2\)

\(2P=\left(x^2-2x\sqrt{y}+y\right)+\left(x^2+2x+1\right)+\left(y-2\sqrt{y}+1\right)\)

\(2P=\left(x-\sqrt{y}\right)^2+\left(x+1\right)^2+\left(\sqrt{y}-1\right)^2\ge0\forall x,y\)

\(\Rightarrow P\ge0\forall x,y\)

dấu = xảy ra khi \(\left\{\begin{matrix}x=\sqrt{y}\\x=-1\\\sqrt{y}=1\end{matrix}\right.\)(có gì đó sai sai)

29 tháng 1 2017

chờ Em hai mươi năm :v

27 tháng 1 2022

Ta có: \(\sqrt{\left(x^2+\dfrac{1}{y^2}\right)\left(1+81\right)}\ge\sqrt{\left(x+\dfrac{9}{y}\right)^2}\)

=> \(\sqrt{x^2+\dfrac{1}{y^2}}\ge\dfrac{x+\dfrac{9}{y}}{\sqrt{82}}\)

Tương tự => \(\left\{{}\begin{matrix}\sqrt{y^2+\dfrac{1}{z^2}}\ge\dfrac{y+\dfrac{9}{z}}{\sqrt{82}}\\\sqrt{z^2+\dfrac{1}{x^2}}\ge\dfrac{z+\dfrac{9}{x}}{\sqrt{82}}\end{matrix}\right.\)

=> \(P\ge\dfrac{\left(x+y+z\right)+9\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}{\sqrt{82}}\)

Mà x + y + z = 1

      \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}=9\)

=> \(P\ge\sqrt{82}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

17 tháng 10 2020

\(hcmuop\underrightarrow{jjjjjjjjj}me\)

30 tháng 5 2019

Ta có \(\frac{y}{x\sqrt{y^2+1}}=\frac{y\sqrt{xz}}{x\sqrt{y\left(x+y+z\right)+xz}}=\frac{yz}{\sqrt{x\left(y+z\right).z\left(x+y\right)}}\ge\frac{2yz}{2xz+xy+yz}\)

Đặt \(a=xy,b=yz,c=xz\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Khi đó

\(P\ge\frac{2b}{2c+a+b}+\frac{2c}{2a+b+c}+\frac{2a}{2b+a+c}\ge\frac{2\left(a+b+c\right)^2}{b^2+c^2+a^2+3\left(ab+bc+ac\right)}\)

Xét \(P\ge\frac{3}{2}\)

=> \(4\left(a+b+c\right)^2\ge3\left(a^2+b^2+c^2\right)+9\left(ab+bc+ac\right)\)

<=> \(a^2+b^2+c^2\ge\left(ab+bc+ac\right)\)(luôn đúng )

Vậy \(MinP=\frac{3}{2}\)khi a=b=c=3=> \(x=y=z=\sqrt{3}\)

22 tháng 7 2019

1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)

\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)

\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)

2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)

\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)

1 tháng 5 2018

bạn vào trang này nhé có bài như thến này đấy 

//123doc.org//document/3173507-ren-luyen-chuyen-de-tim-maxmin-on-thi-thpt-quoc-gia.htm

20 tháng 5 2020

tính diện tích hình vẽ dưới đây

42.4 cm 25.7 cm 30cm 48.4cm 23m 31.6m

13 tháng 5 2017

Áp dụng bất đẳng thức cauchy:

\(P=\sum\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}\ge\sum\dfrac{2x^2\sqrt{yz}}{y\sqrt{y}+2z\sqrt{z}}=\sum\dfrac{2\sqrt{x^3}\sqrt{xyz}}{\sqrt{y^3}+2\sqrt{z^3}}=\sum\dfrac{2\sqrt{x^3}}{\sqrt{y^3}+2\sqrt{z^3}}\)(vì xyz=1).

đặt \(\left\{{}\begin{matrix}\sqrt{x^3}=a\\\sqrt{y^3}=b\\\sqrt{z^3}=c\end{matrix}\right.\)(\(a,b,c>0\))thì giả thiết trở thành cho abc=1. tìm Min \(P=\dfrac{2a}{b+2c}+\dfrac{2b}{c+2a}+\dfrac{2c}{a+2b}\)

Áp dụng BĐT cauchy-schwarz:

\(P=2\left(\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\right)\ge\dfrac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\)( AM-GM \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\))

Dấu = xảy ra khi a=b=c=1 hay x=y=z=1