Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(I=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|=\left(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{4}\right|\right)+\left|x+\frac{1}{3}\right|\)
\(=\left(\left|x+\frac{1}{2}\right|+\left|-x-\frac{1}{4}\right|\right)+\left|x+\frac{1}{3}\right|\ge\left|x+\frac{1}{2}-x-\frac{1}{4}\right|+\left|x+\frac{1}{3}\right|=\frac{1}{4}+\left|x+\frac{1}{3}\right|\ge\frac{1}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)\left(-x-\frac{1}{4}\right)\ge0\\x+\frac{1}{3}=0\end{cases}}\Leftrightarrow x=-\frac{1}{3}\)
Vậy min I = 1/4 đạt tại x = -1/3.
a: k=-2/5
=>y=-2/5x
Khi x=-1 thì y=2/5
b: Khi y=3 thì -2/5x=3
hay x=3:(-2/5)=-3x5/2=-15/2
\(x=2\) là nghiệm của đa thức đã cho nên:
\(2^2-2m.2+1=0\)
\(\Leftrightarrow4m=5\Rightarrow m=\dfrac{5}{4}\)
Thay x=2 vào phương trình \(x^2-2mx+1=0\), ta được:
\(2^2-2m\cdot2+1=0\)
\(\Leftrightarrow-4m+5=0\)
\(\Leftrightarrow-4m=-5\)
hay \(m=\dfrac{5}{4}\)
Vậy: Để x=2 là nghiệm của đa thức \(x^2-2mx+1\) thì \(m=\dfrac{5}{4}\)
A=x^2+x-6
=x^2+2x.1/2+(1/2)^2-(1/2)^2-6
=(x+1/2)^2-25/4> hoặc bằng -25/4
vậy min A=-25/4 <=> x+1/2=0
<=> x=-1/2
B=x-x^2-1
=-(x^2-x+1)
=-[x^2-2x.1/2+(1/2)^2-(1/2)^2+1]
=-[(x-1/2)^2+3/4]
=-(x-1/2)^2-3/4 < hoặc bằng -3/4
vậy max B=-3/4 <=> -x+1/2=0
<=> x=1/2
mã là gì