K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Ta có \(\frac{x^2-2x+2018}{x^2}=1-\frac{2}{x}+\frac{2018}{x^2}=2018\left(\frac{1}{x^2}-\frac{2}{2018x}+\frac{1}{2018}\right)=2018\left(\frac{1}{x^2}-2.\frac{1}{2018x}+\frac{1}{2018^2}\right)+\frac{2017}{2018}=2018.\left(\frac{1}{x}-\frac{1}{2018}\right)^2+\frac{2017}{2018}\)

 Nhận thấy \(2018\left(\frac{1}{x}-\frac{1}{2018}\right)^2\ge0\forall x=>2018\left(\frac{1}{x}-\frac{1}{2018}\right)^2+\frac{2017}{2018}\ge\frac{2017}{2018}\forall x\)

Dấu "=" xảy ra khi 1/x-1/2018=0=> x=2018

Vậy min A=2017/2018 <=> x=2018

\(A=\left(x+1\right)^2-\left(2x-3\right)^2-15\)

\(A=\left(x+1\right)^2-\left(2x-3\right)^2-15\ge-15\)

\(A_{min}=-15\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{2}\end{cases}}}\)

P/s tham khảo nha

19 tháng 11 2017

\(B=x^2-2xy+4y^2-2x-10y+2018\)

\(B=\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(3y^2-12y+12\right)+2005\)

\(B=\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-2\right)^2+2005\)

\(B=\left(x-y-1\right)^2+3\left(y-2\right)^2+2005\ge2005\)

VÌ \(\left(x-y-1\right)^2+3\left(y-2\right)^2\ge0\forall x;y\)

DẤU "="XẢY RA KHI Y=2;X=3

14 tháng 5 2018

A=1/2017-2/2017x+2018/2017x^2

1/2017x=y

A=2018y^2-2y+1/2017

A=2018(y^2-2.y./2018+1/2018^2)

-1/2018+1/(2017)

A=2018(y-1/2018)^2-1/(2018.2017)

GTNNA=1/(2017.2018)

khi y=1/2018

x=2017/2018

16 tháng 6 2017

a) \(H=x^2-4x+16\)

\(H=\left(x+2\right)^2+12\ge12\)

vậy min H=12 \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

10 tháng 10 2018

Đặt biểu thức là A

\(x^2+xy+y^2-3x-3y+2018\)

\(=\left(x^2+xy+y^2\right)-\left(3x+3y\right)+2018\)

\(=\left(x+y\right)^2-3\left(x+y\right)+2018\)

Ta có : (x - y)² ≥ 0 
<=> x² + y² ≥ 2xy 
<=> x² + 2xy + y² ≥ 4xy 
<=> (x + y)² ≥ 4xy 
<=> xy ≤ (x + y)²/4 
<=> -xy ≥ -(x + y)²/4 

--> A ≥ (x + y)² - 3(x + y) - (x + y)²/4 

<=> A ≥ 3(x + y)²/4 - 3(x + y) 

để dễ nhìn,ta đặt t = x + y 

--> A ≥ 3t²/4 - 3t = 3(t²/4 - 2.t/2 + 1) - 3 = 3(t/2 - 1)² - 3 ≥ -3 

Dấu " = " xảy ra <=> t/2 = 1 <=> t = 2 <=> x + y = 2 và x = y --> x = y = 1 

Vậy MinA = -3 <=> x = y = 1

28 tháng 10 2022

Bài 2: 

a: \(=-\left(x^2+4x-10\right)\)

\(=-\left(x^2+4x+4-14\right)=-\left(x+2\right)^2+14< =14\)

Dấu = xảy ra khi x=-2

b: \(=-2\left(x^2-2x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-2x+1+\dfrac{3}{2}\right)\)

\(=-2\left(x-1\right)^2-3< =-3\)

Dấu = xảy ra khi x=1

c: \(=x^2-2x+1-2\left(x^2+6x+9\right)+20\)

\(=x^2-2x+21-2x^2-12x-18\)

\(=-x^2-14x+3\)

\(=-\left(x^2+14x-3\right)\)

\(=-\left(x^2+14x+49-52\right)=-\left(x+7\right)^2+52< =52\)

Dấu = xảy ra khi x=-7