K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2019

\(A=\frac{2x^2+x-1}{x^2-2x+2}\Leftrightarrow Ax^2-2A.x+2A=2x^2+x-1\)

\(\Leftrightarrow x^2\left(A-2\right)-2x\left(A+1\right)+\left(2A+1\right)=0\) (1)

+) Với A = 2 thì \(-6x+5=0\Leftrightarrow x=-\frac{5}{6}\)

+) Với A khác 2 thì (1) là phương trình bậc 2.Tức (1) có nghiệm

Hay \(\Delta'=\left(A+1\right)^2-\left(A-2\right)\left(2A+1\right)\ge0\)

Giải cái bất phương trình trên là ok!

22 tháng 2 2017

coi nó là pt ẩn x tham số Y:

Vậy pt <=> \(\left(Y-1\right)x^2+\left(2Y-1\right)x+2Y-1=0\)

xét \(\Delta=\left(2Y-1\right)^2-4\left(Y-1\right)\left(2Y-1\right)=4Y^2-4Y+1-\left(4Y-4\right)\left(2Y-1\right)\)

\(=4Y^2-4Y+1-8Y^2+12Y-4=-4Y^2+8Y-3=\left(-2Y+1\right)\left(2X-3\right)\)

Do pt có nghiệm nên ta có: \(\Delta\ge0\Leftrightarrow\left(-2Y+1\right)\left(2Y-3\right)\ge0\Leftrightarrow\frac{1}{2}\le Y\le\frac{3}{2}\)

Vậy Min P=\(\frac{1}{2}\) và Max P=\(\frac{3}{2}\)

22 tháng 2 2017

\(\frac{x^2+x+1}{x^2+2x+2}\)

\(\frac{x^2+2x+1-x}{x^2+2x+1+1}\)

= ..............

đến đây mk ko biết phân tích nên 

bn làm tiếp nhé

31 tháng 1 2018

đặt các biểu thức trên bằng a rồi nhân lên dùng denta

23 tháng 8 2017

với đk 0 ≤ x # 1, biểu thức đã cho xác định 

P = (x+2)/(x√x-1) + (√x+1)/(x+√x+1) - (√x+1)/(x-1) 

P = (x+2)/ (√x-1)(x+√x+1) + (√x+1)/ (x+√x+1) - 1/(√x-1) {hđt: x-1 = (√x-1)(√x+1)} 

P = [(x+2) + (√x+1)(√x-1) - (x+√x+1)] / (x√x-1) 

P = (x-√x)/(x√x-1) = (√x-1)√x /(√x-1)(x+√x+1) 

P = √x / (x+√x+1) 
- - - 
ta xem ở trên là biểu thức rút gọn của P, để chứng minh P < 1/3 ta biến đổi tiếp: 

P = 1/ (√x + 1 + 1/√x) 

bđt côsi: √x + 1/√x ≥ 2 ; dấu "=" khi x = 1 nhưng do đk xác định nên ko có dấu "=" 

vậy √x + 1/√x > 2 <=> √x + 1 + 1/√x > 3 <=> P = 1/(√x + 1 + 1/√x) < 1/3 (đpcm) 

11 tháng 5 2018

\(A=\frac{x^2-2x+2018}{x^2}=1-\frac{2}{x}+\frac{2018}{x^2}\)

\(=2018t^2-2t+1\left(\frac{1}{x}=t\right)\)

\(=2018\left(t^2-\frac{2t}{2018}+\frac{1}{2018}\right)\)

\(=2018\left(t-\frac{1}{2018}\right)^2+\frac{2017}{2018}\ge\frac{2017}{2018}\)