K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

min-----------nhỏ----

max là giá trị lớn nhất

còn đâu tự làm nha

9 tháng 5 2016
  • Min: A= -1+  (x-2)2/(x2+1) (tách ra)                                                                                                                                              => Amin =-1 <=> x-2=0 <=> x=2                                                                              
  • Max: A= 4 -  (2x+1)2/(x2+1)                                                                                                                                                                                                      => Amax = 4 <=> 2x+1=0 <=> x= -1/2
12 tháng 7 2021

M = x2 + 4x + 2 = ( x2 + 4x + 4 ) - 2 = ( x + 2 )2 - 2 ≥ -2 ∀ x

Dấu "=" xảy ra <=> x = -2 . Vậy MinM = -2

N = 4x2 - 8x + 4 = ( 2x - 2 )2 ≥ 0 ∀ x 

Dấu "=" xảy ra <=> x = 1 . Vậy MinN = 0

E = x( x - 6 ) - 6 = x2 - 6x - 6 = ( x2 - 6x + 9 ) - 15 = ( x - 3 )2 - 15 ≥ -15 ∀ x

Dấu "=" xảy ra <=> x = 3 . Vậy MinE = -15

24 tháng 6 2018

\(A=-x^2+6x-15\)

\(A=-x^2+2.3x-9-6\)

\(\Rightarrow-A=x^2-2.3x+9+6\)

\(-A=\left(x^2-2.3.x+3^2\right)+6\)

\(-A=\left(x-3\right)^2+6\)

\(\Rightarrow A=-\left(x-3\right)^2-6\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3\right)^2-6\le-6\forall x\)

\(A=-6\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amax =-6\(\Leftrightarrow\)x=3

\(B=-2x^2+8x-15\)

\(-2B=4x^2-16x+30\)

\(-2B=\left[\left(2x\right)^2-2.2x.4+4^2\right]+14\)

\(-2B=\left(2x-4\right)^2+14\)

\(\Rightarrow B=-\frac{\left(2x-4\right)^2}{2}-7\)

Ta có: \(-\frac{\left(2x-4\right)^2}{2}\le0\forall x\)

Đến đây b làm tương tự như trên nhé. 

Chúc b học tốt

24 tháng 6 2018

a)  \(A=-x^2+6x-15\)

\(-A=x^2-6x+15\)

\(-A=\left(x^2-6x+9\right)+6\)

\(-A=\left(x-3\right)^2+6\)

Mà  \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge6\)

\(\Leftrightarrow A\le-6\)

Dấu "=" xảy ra khi :

\(x-3=0\Leftrightarrow x=3\)

Vậy  \(A_{Max}=-6\Leftrightarrow x=3\)