K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
2 tháng 2 2017
2b nhé bạn!
Giả sử 2002+n2 là số chính phương m2
Hiển nhiên 2002 chia cho 4 dư 2
Ta luôn biết số chính phương chỉ có dạng 4k hoặc 4k+1 (*)
- Nếu m2 dạng 4k
Thì n2 dạng 4k+2 thì theo (*) đây không là số chính phương
- Nếu m2 dạng 4k+1
Thì n2 dạng 4k+3 thì theo (*) ta lại thấy đây không là số chính phương
Vậy không tồn tại n để 2002+n2 là số chính phương
29 tháng 3 2016
1)x2 +2x=0
=>x(x+2)=0
Xét x=0 hoặc x+2=0
x=-2
Vậy x=0 hoặc x=-2
2)x2 +2x-3=0
=x2 -1x+3x-3=0
=x(x-1)+3(x-1)=0
=(x-1)(x-3)=0
Xét x-1=0 hoặc x-3=0
x=1 x=3
Tự KL nha
AH
0
DL
4
1 tháng 1 2017
a)3^2+2^2=5^2 => n=2
b) 3^2+2^2=5^2 => n=2
nó là duy nhất
c/m duy nhất: giờ thi trác nhiệm thôi khỏi cần chưng minh
= \(\left(m^2+4m+3\right)\left(m^2+4m+3+32m+320\right)+35^3=\)\(\left(m^2+4m+3\right)^2+32\left(m+10\right)\left(m^2+4m+3\right)+35^3=\)\(\left(m^2+4m+3\right)^2+2.\left(16m+160\right)\left(m^2+4m+3\right)+\left(16m+160\right)^2-\)\(\left(16m+160\right)^2+35^3=\)
\(\left(m^2+4m+3+16m+160\right)^2-\left(16m+160\right)^2+35^3=\)
\(\left(m^2+20m+163\right)^2-16^2\left(m+10\right)^2+35^3=\)\(\left[\left(m+10\right)^2+63\right]^2-256\left(m+10\right)^2+35^3.\)(1)
Đặt (m+10)2 = a( m thuộc N lên a \(\ge10^2=100\))
(1) <=> (a+63)2 -256a + 353 = a2 -130a +632+353 = (a-65)2 + 42619 = K2 (K \(\in N\))
<=> K2- (a-65)2 =42619 <=> (K-a+65)(K+a-65) = 17.23.109
Với a\(\ge10=>K+a-65>K-a+65\)
=> \(\hept{\begin{cases}K+a-65=17.23.109\\K-a+65=1\end{cases};\hept{\begin{cases}K+a-65=23.109\\K-a+65=17\end{cases};\hept{\begin{cases}K+a-65=17.109\\K-a+65=23\end{cases}}}};\)\(\hept{\begin{cases}K+a-65=17.23\\K-a+65=109\end{cases}}\)
giải \(\hept{\begin{cases}K+a-65=17.23.109\\K-a+65=1\end{cases}}\)trừ vế theo vế ta được 2a -2.65=42618 <=> a = 21374 = (m+10)2
dễ thấy 21374 chia hết cho 2 nhưng không chia hết cho 4 nên 21374 không phải là số chính phương => không có m thỏa mãn
giải tương tự các hệ phương trình còn lại ta cũng không tìm được m thỏa mãn
Vậy không có m thỏa mãn.
(có ai giải khác chỉ mình với)