K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2021

Phương trình có 2 nghiệm khi \(\Delta'=m^2-4\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2=3\)

\(\Rightarrow\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2=3\)

\(\Rightarrow\left(\dfrac{x_1^2+x_2^2}{x_1x_2}\right)^2=5\)

\(\Rightarrow\left(\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{4}\right)^2=5\)

\(\Rightarrow\left(m^2-2\right)^2=5\)

\(\Rightarrow m^2=2+\sqrt{5}\)

\(\Rightarrow m=\pm\sqrt{2+\sqrt{5}}\)

27 tháng 7 2021

tại sao lại có -2 ạ

26 tháng 11 2021

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

19 tháng 3 2021

1.

\(2\left|x-m\right|+x^2+2>2mx\)

\(\Leftrightarrow\left(x-m\right)^2+2\left|x-m\right|-m^2+2>0\)

\(\Leftrightarrow t^2+2t-m^2+2>0\left(t=\left|x-m\right|\ge0\right)\)

\(\Leftrightarrow m^2< f\left(t\right)=t^2+2t+2\)

Yêu cầu bài toán thỏa mãn khi \(m^2< minf\left(t\right)=2\)

\(\Leftrightarrow-\sqrt{2}< m< 2\)

Vậy \(-\sqrt{2}< m< 2\)

19 tháng 3 2021

2.

\(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\)

\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+2m^2-3m+1< 0\)

\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)

Ta có \(VT=\left(\left|x+m\right|+1\right)^2=\left(-\left|x+m\right|-1\right)^2\le\left(-1\right)^2=1\)

Yêu cầu bài toán thỏa mãn khi \(VP=-2m^2+3m>1\)

\(\Leftrightarrow2m^2-3m+1< 0\)

\(\Leftrightarrow\dfrac{1}{2}< m< 1\)

16 tháng 3 2016

ừm...để giải cái đã.Xem nào...
 

a: \(\Delta=\left(2m\right)^2-4\cdot2\cdot\left(m^2-2\right)\)

\(=4m^2-8m^2+16\)

\(=-4m^2+16\)

Để phương trình có hai nghiệm cùng dấu thì \(\left\{{}\begin{matrix}-4m^2+16>=0\\\dfrac{m^2-2}{2}>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2< =m< =2\\\left[{}\begin{matrix}m>=\sqrt{2}\\m< =-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-2< =m< =-\sqrt{2}\\\sqrt{2}< =m< =2\end{matrix}\right.\)

b: Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

c: \(\Delta=\left(2m+14\right)^2-4\left(m^2-4\right)\)

\(=4m^2+56m+196-4m^2+16\)

=56m+212

Để phương trình có hai nghiệm âm phân biệt thì \(\left\{{}\begin{matrix}56m+212>0\\2\left(m+7\right)< 0\\\left(m-2\right)\left(m+2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{53}{14}< m< -7\\\left(m-2\right)\left(m+2\right)>0\end{matrix}\right.\)

=>\(m\in\varnothing\)

17 tháng 12 2020

undefined

18 tháng 12 2020

hình như bạn bị nhầm chỗ △' rồi △' = \(b'^2-ac\) chứ nhỉ 

 

 

31 tháng 5 2019

x4-2mx2+(m2-1)=0(*)

Đặt t=x2(t>=0)

PT trở thành: t2-2mt+(m2-1)=0 (1)

Để pt(*) có 3 nghiệm thì pt(1) có 1 nghiệm dương khác 0 và 1 nghiệm =0

=>m2-1=0<=>m=1 hoặc m=-1

với m=1 pt(1) có hai nghiệm t=0 hoặc t=2 (nhận)

với m=-1 pt(1) có hai nghiệm t=0 hoặc t=-2 (loại)

vậy m=1

31 tháng 5 2019

ohhhhhh tks man