K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 6 2020

a/ \(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta=\left(3+m\right)^2-8\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m^2-2m+1\le0\end{matrix}\right.\) \(\Rightarrow m=1\)

b/ - Với \(m=-1\Rightarrow-2x+2< 0\Rightarrow x>1\) (ko thỏa mãn)

Với \(m\ne-1\Rightarrow\Delta=\left(m-1\right)^2\ge0\) \(\forall m\)

Để \(f\left(x\right)< 0\) với mọi \(x< -1\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\-1< x_1< x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\frac{2}{m+1}+\frac{m+3}{m+1}+1>0\\\frac{m+3}{m+1}>-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\2m+6< 0\\3m+5< 0\end{matrix}\right.\) \(\Rightarrow m< -3\)

1. Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện a) \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\) b) \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\) c) \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\) d) \(\left\{{}\begin{matrix}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{matrix}\right.\) 2. Cho A có n...
Đọc tiếp

1. Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện

a) \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\)

b) \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\)

c) \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\)

d) \(\left\{{}\begin{matrix}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{matrix}\right.\)

2. Cho A có n phần tử. Với \(r\in Z^+\), gọi \(f\left(r;n\right)\) là số cách chọn ra k tập con của A sao cho các tập con này không có phần tử chung. Tính \(f\left(r;n\right)\) theo n biết

a) r = 1

b) r = 2

c) r = 3

d) r bất kì

3. Cho \(A=\left\{1;2;3;...;n\right\}\). Với mỗi tập X, kí hiệu m(X) là trung bình cộng các phần tử của X. Gọi S là tập các tập con khác tập rỗng của A. T = {m(X)/ \(X\in S\)}

Tính m(T)

m.n giúp với mk đang cần gấp

Hung nguyen Ace Legona Akai Haruma

0
28 tháng 10 2020

x=yx44444444444444444444444444444

2 tháng 11 2020

Đặt \(x+\frac{1}{x}=t\)thì \(x^2+\frac{1}{x^2}=t^2-2\)

Lúc đó: \(y=f\left(x\right)=t^2-2+2t+8=\left(t^2+2t+1\right)+5=\left(t+1\right)^2+5\ge5\)

Đẳng thức xảy ra khi \(t=x+\frac{1}{x}=-1\Leftrightarrow x^2+x+1=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{3}{4}\)\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{\sqrt{3}}{2}i\\x+\frac{1}{2}=-\frac{\sqrt{3}}{2}i\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}i-1}{2}\\x=\frac{-\sqrt{3}i-1}{2}\end{cases}}\)