K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 7 2021

- Với \(m=\dfrac{1}{2}\Rightarrow\left(x+1\right)^2>0\) có tập nghiệm \(R\backslash\left\{-1\right\}\) thỏa mãn

- Với \(m>\dfrac{1}{2}\) BPT có nghiệm: \(\left\{{}\begin{matrix}x>-1\\x< -2m\end{matrix}\right.\) hay \(D=\left(-\infty;-2m\right)\cup\left(-1;+\infty\right)\)

Thỏa mãn do \(\left(1;+\infty\right)\subset\left(-1;+\infty\right)\)

- Với \(m< \dfrac{1}{2}\) BPT có nghiệm: \(\left\{{}\begin{matrix}x>-2m\\x< -1\end{matrix}\right.\) hay \(D=\left(-\infty;-1\right)\cup\left(-2m;+\infty\right)\)

Tập nghiệm của BPT chứa \(\left(1;+\infty\right)\) khi:

\(-2m\le1\Rightarrow m\ge-\dfrac{1}{2}\Rightarrow-\dfrac{1}{2}\le m< \dfrac{1}{2}\)

Kết hợp lại ta được: \(m\ge-\dfrac{1}{2}\)

NV
22 tháng 6 2020

Ta có: \(3x^2-6x+4=3\left(x-1\right)^2+1>0;\forall x\) nên BPT tương đương:

\(\left(m-4\right)x^2+\left(m+1\right)x+2m-1>0\)

a/ Để tập nghiệm của BPT là R:

\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=\left(m+1\right)^2-4\left(m-1\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\-7m^2+38m-15< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m>5\\m< \frac{3}{7}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>5\)

b/ Với \(m=4\) BPT có nghiệm (ktm)

Với \(m\ne4\) để BPT vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\Delta'=-7m^2+38m-15\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m\ge5\\m\le\frac{3}{7}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=4\\m\le\frac{3}{7}\end{matrix}\right.\)

 

a: Trường hợp 1: m=0

Bất phương trình sẽ là \(0x^2+3\cdot0\cdot x+0+1>0\)

=>1>0(luôn đúng)

Trường hợp 2: m<>0

\(\text{Δ}=\left(3m\right)^2-4m\left(m+1\right)\)

\(=9m^2-4m^2-4m=5m^2-4m\)

Để phương trình có nghiệm đúng với mọi số thực x thì \(\left\{{}\begin{matrix}m\left(5m-4\right)< 0\\m>0\end{matrix}\right.\Leftrightarrow0< m< \dfrac{4}{5}\)

Vậy: 0<=m<4/5

b: Trường hợp 1: m=4

\(g\left(x\right)=\left(4-4\right)\cdot x^2+\left(2\cdot4-8\right)x+4-5=-1< 0\)(luôn đúng)

Trường hợp 2: m<>4

\(\text{Δ}=\left(2m-8\right)^2-4\left(m-4\right)\left(m-5\right)\)

\(=4m^2-32m+64-4\left(m^2-9m+20\right)\)

\(=4m^2-32m+64-4m^2+36m-80\)

=4m-16

Để bất phương trình luôn âm thì \(\left\{{}\begin{matrix}4m-16< 0\\m-4< 0\end{matrix}\right.\Leftrightarrow m< 4\)

Vậy: m<=4

16 tháng 2 2018

(2m + 1)x + m - 5 ≥ 0 ⇔ (2m + 1)x ≥ 5 - m (*)

TH1: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , bất phương trình (*) trở thành: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Tập nghiệm của bất phương trình là:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Để bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1)

thì (0;1) Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Hay Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

TH2: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , bất phương trình (*) trở thành: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Bất phương trình vô nghiệm. ⇒ không có m .

TH3: Với Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , bất phương trình (*) trở thành: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Tập nghiệm của bất phương trình là:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Để bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1)

thì (0;1) Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Hay Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Kết hợp điều kiện Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , ⇒ không có m thỏa mãn.

Vậy với m ≥ 5, bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1).

I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc...
Đọc tiếp
I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc hai. Bất phương trình bậc hai. Bài tập. 1. Xét dấu biểu thức f(x) = (2x - 1)(5 -x)(x - 7). g(x)= [1/(3-x)]-[1/(3+x)] h(x) = -3x2 + 2x – 7 k(x) = x2 - 8x + 15 2. Giải bất phương trình a) [(5-x)(x-7)]/x-1 > 0 b) –x2 + 6x - 9 > 0; c) -12x2 + 3x + 1 < 0. g) (2x - 8)(x2 - 4x + 3) > 0 h) k) l). (1 – x )( x2 + x – 6 ) > 0 m). 3. Giải bất phương trình a/ b/ c/ d/ e/ 4) Giải hệ bất phương trình sau a) . b) . c) d) 5) Với giá trị nào của m, phương trình sau có nghiệm? a) x2+ (3 - m)x + 3 - 2m = 0. b) 6) Cho phương trình : Với giá nào của m thì : a) Phương trình vô nghiệm b) Phương trình có các nghiệm trái dấu 7) Tìm m để bpt sau có tập nghiệm là R: a) b) 8) Xác định giá trị tham số m để phương trình sau vô nghiệm: x2 – 2 (m – 1 ) x – m2 – 3m + 1 = 0. 9) Cho f (x ) = ( m + 1 ) x – 2 ( m +1) x – 1 a) Tìm m để phương trình f (x ) = 0 có nghiệm b). Tìm m để f (x) 0 ,
0
NV
23 tháng 1

\(\Leftrightarrow x^2-\left(2m-1\right)x+2m-2=0\) có 2 nghiệm pb \(x_1;x_2\) thỏa mãn \(\left|x_1-x_2\right|=5\)

\(\Delta=\left(2m-1\right)^2-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\)

Pt có 2 nghiệm pb khi \(\left(2m-3\right)^2>0\Rightarrow m\ne\dfrac{3}{2}\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)

\(\left|x_1-x_2\right|=5\Leftrightarrow\left(x_1-x_2\right)^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=25\)

\(\Leftrightarrow\left(2m-1\right)^2-4\left(2m-2\right)=25\)

\(\Leftrightarrow\left(2m-3\right)^2=25\)

\(\Rightarrow\left[{}\begin{matrix}2m-3=5\\2m-3=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=4\\m=-1\end{matrix}\right.\)

26 tháng 11 2021

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)