K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2021

Sửa lại đề:

x2 - (3m - 1)x + 2m2 - m = 0

Ta có: \(\Delta\) = [-(3m - 1)]2 - 4.1.(2m2 - m) = 9m2 - 6m + 1 - 8m2 + 4m = m2 - 2m + 1 = (m - 1)2 \(\ge\) 0

\(\Rightarrow\) x1 = \(\dfrac{3m-1+m-1}{2}=\dfrac{4m-2}{2}=2m-1\)

x2 = \(\dfrac{3m-1-m+1}{2}=\dfrac{2m}{2}=m\)

Ta có: x1 = x22 \(\Leftrightarrow\) 2m - 1 = m2 \(\Leftrightarrow\) m2 - 2m + 1 = 0 \(\Leftrightarrow\) (m - 1)2 = 0

\(\Leftrightarrow\) m - 1 = 0 \(\Leftrightarrow\) m = 1

Vậy m = 1

Chúc bn học tốt!

NV
12 tháng 4 2021

a. Bạn tự giải

b.

\(\Delta=\left(3m-1\right)^2-4\left(2m^2+2m\right)=m^2-14m+1\)

Pt có 2 nghiệm pb khi \(m^2-14m+1>0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3m-1\\x_1x_2=2m^2+2m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2+2m\right)=4\)

\(\Leftrightarrow m^2-14m-3=0\Rightarrow m=7\pm2\sqrt{13}\) (đều thỏa mãn (1))

\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)\)

\(=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2\)>=0

=>Phương trình luôn có hai nghiệm

\(\left|x_1-x_2\right|=3\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3\)

\(\Leftrightarrow\sqrt{\left(\dfrac{1-2m}{2}\right)^2-4\cdot\dfrac{m-1}{2}}=3\)

\(\Leftrightarrow\dfrac{1}{4}\left(4m^2-4m+1\right)-2\left(m-1\right)-3=0\)

\(\Leftrightarrow m^2-m+\dfrac{1}{4}-2m+2-3=0\)

\(\Leftrightarrow m^2-3m-\dfrac{3}{4}=0\)

\(\Leftrightarrow4m^2-12m-3=0\)

Đến đây bạn chỉ cần giải pt bậc hai là được rồi

3 tháng 6 2021

Để PT có hai nghiệm x1,x2 thì: 

Δ' = (-1)2 - 1.(3m-2) > 0

<=> m <1

Áp dụng Viet, ta có : 

x1 + x2 = -2

x1.x2 = 3m-2

Ta có : 

x12 + x22 = (x1 + x2)2 - 2x1.x2 = (-2)2 - 2(3m-2) = 20

<=> 4 -6m + 4 = 20

<=> m = -2 (thỏa mãn)

Vậy m = -2

4 tháng 1 2022

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=\left(2m-3\right)^2-4\left(m-3\right)=9>0\)

Vậy PT có 2 nghiệm phân biệt với mọi m

Ta có \(\left[{}\begin{matrix}x_1=\dfrac{2m-3+3}{2}=m\\x_2=\dfrac{2m-3-3}{2}=m-3\end{matrix}\right.\)

Ta thấy \(m>m-3\) nên \(1< m-3< m< 6\Leftrightarrow4< m< 6\)

Vậy \(4< m< 6\)  thỏa yêu cầu đề

16 tháng 5 2021

a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v

4 tháng 4 2016

quá dễ

17 tháng 2 2019

phương trình có 2 nghiệm 1<x1<x2 <=>

\(\left\{{}\begin{matrix}\Delta>0\\a\cdot f\left(1\right)>0\\\dfrac{S}{2}>1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9>0\\1-\left(2m-3\right)+m^2-3m>0\\2m-3>1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+4>0\\m>2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;1\right)\cup\left(4;+\infty\right)\\m>2\end{matrix}\right.\)

\(\Leftrightarrow m\in\left(4;+\infty\right)\)